
LEAVING TOIL TO MACHINES - BUILDING SIMULATION
KERNEL OF EDUCATIONAL SOFTWARE IN MODERN

SOFTWARE ENVIRONMENTS
Jiří Kofránek, Marek Mateják, Pavol Privitzer

Laboratory of Biocybernetics, Dept.of Pathophysiology, 1st Faculty of Medicine, Charles University,
Prague

Abstract

In past, simulation models had been created directly in the software development environment used for making
the educational software itself. Recen tly, specialized development tools rather than universal programming
languages have been used for making and verifi cation of simulation models. Common choice is that of the block
oriented environments (e.g. Simulink). In these environments, hierarchically connected blocks that process input
information to output information are used and connected when creating a simulation model. Signals fl ow in
connections between individual blocks, transmitting the values of individual variables from the output of one block
to the input of other. The s tructure of the interconnected network preserves the algorithm of calculation, i.e. clarifi es
how the values of particular variables are calculated step by step. The whole process is known as causal modelling.
The limitation of the causal approach to modelling is that it refl ects more the calculation procedure than the actual
structure of the modelled reality. The physical structure of the modelled world is captured only by the structure of
calculation. Causal modelling is especially arduous for intricate, hierarchically organized models, for instance the
models of complex physiological systems, which biomedical simulators are based on. At present, new simulation
environments have become available. Fundamental innovation of these environments comprises of the possibility
to describe individual parts of the model as a system of equations directly describing the behaviour of that part and
not the algorithm of solving of these equations. Model description is declarative (the structure of mathematical
relationships instead of algorithm of calculation is described) and notation is therefore acausal. Acausal modelling
environments work with interconnected components (i.e. blocks) as well. A component represents an instance of
class for which equations or parameters are defi ned. Components are linked through connectors that are defi ned
more precisely then usual, as they themselves help to defi ne the system of equations. Thus, the connections between
components do not defi ne the calculation procedure but rather the modelled reality. The exact algorithm and method
of solving the equations is “left to the machines”. When large and complex systems are modelled in acausal
simulation environments (e.g. based upon modelling language Modelica), the whole process can be facilitated so
substantially, as to make it the breakthrough innovation in building the simulation kernel of biomedical educational
software. Advantages of the acausal approach are demonstrated using Modelica implementation of a large-scale
physiological system model “Quantitative Human Physiology” as an example.

Keywords: Modeling, Simulation, Simulator

In place of an introduction – a web of physiological regulations
Thirty-six years ago the Annual Review of Physiology published an article (Gyuton et al. 1972)

which at a glance was entirely different from the usual physiological articles of that time. It was introduced
by a large diagram on an insertion. Full of lines and interconnected elements, the drawing vaguely
resembled an electrical wiring diagram at fi rst sight (Fig. 1). However, instead of vacuum tubes or other
electrical components, it showed interconnected computation blocks (multipliers, dividers, adders,
integrators, functional blocks) that symbolized mathematical operations performed on physiological
variables (Fig. 2). Bundles of connecting wires between the blocks indicated the complex feedback
interconnection of physiological variables at fi rst glance. The blocks were arranged in eighteen groups
that represented individual interconnected physiological subsystems. In the centre was a subsystem
representing circulatory dynamics – linked through feedback links with other blocks: From the kidneys
to tissue fl uids and electrolytes to autonomic nervous control and hormonal control including ADH,
angiotensin and aldosterone (Fig. 3).

Figure 1: Guyton’s blood circulation regulation diagram from 1972.

Figure 2: Individual elements in the block diagram of Guyton’s model represent mathematical
operations, the interconnection of elements represents equations in a graphically expressed

mathematical model..

Multiplier

Divider

Functional block

Integrator

PCP

PPA PLA

PCP=0.55 PLA+0.45 PPA

+
+

-

Summator

-4
0

20

50

MEFANET 2009

2

Circulatory
dynamics

kidney

thirst

ADH
control

vascular
stress

relaxation

muscle
blood flow
and PO2

non-muscles
oxygen
delivery

non-muscles
blood flow

autonomic
control

heart rate,
stroke
volume

pulmonary
dynamics

red cells,
viscosity

heart
hypertrophy

tissue
fluids,

pressures,
gel

electrolytes
& cell water

aldosterone
control

angiotensin
control

capillary
membrane
dynamics

Figure 3: Individual interconnected subsystems in Guyton’s model.

Multiplier
Divider

Summator Integrator

Guyton

Simulink

Functional block

s
1

Guyton

Simulink

Guyton

Simulink

GuytonSimulink

-4
0

20

50-4
0

20

50

Simulink

+
+

-

+
+

-

Guyton

Figure 4: Appearance of blocks in Guyton’s original graphical notation and in Simulink.

MEFANET 2009

3

C d

185

158A

.14
184

1
183

.3333

1 AHC

AH +

185 158A

.14
184

1
183

.3333

1
AHC

AH +

+

+

C t d

RCD332
0

331
RC1

+
+

RCD332
0

331
RC1

-
+

HM40

336 HMK
1600

HM2

HKM

VIE
1.5
337

HM40

336
HMK

1600

HM2

HKM

VIE
1.5
337

-
+

40

40
0

+QAO DVS

QVO

5 6

0
VVS
3.25

5

+QAO DVS

QVO

5 6

0
VVS
3.25

5

Error!

Corrected
Corrected

Corrected
CorrectedCorrected

Error!

Error!

Figure 5: Correction of errors in Guyton’s original diagram.

MEFANET 2009

4

In this entirely new manner, using graphically represented mathematical symbols, the authors
described the physiological regulations of the circulatory system and its broader physiological relations
and links with the other subsystems in the body – the kidneys, volumetric and electrolyte balance control,
etc. Instead of an extensive set of mathematical equations, the article used a graphical representation
of mathematical relations. This syntax allowed depicting relations between individual physiological
variables graphically in the form of interconnected blocks representing mathematical operations. The
whole diagram thus featured a formalized description of physiological relations in the circulatory system
using a graphically represented mathematical model.

The actual description of the model in the article was mostly represented by the elementary (but
fully illustrative) drawing. Comments on and reasons for the formulation of the mathematical relations
were very brief, e.g.: “Blocks 266 through 270 calculate the effect of cell pO2, autonomic stimulation,
and basic rate of oxygen consumption by the tissues on the actual rate of oxygen consumption by
the tissues”. This required exceptional concentration (and certain physiological and mathematical
knowledge) from the reader to be able to understand the formalized relations between physiological
variables.

A monograph (Guyton et al. 1973) published a year later, in 1973, explained a number of the
adopted approaches in greater detail.

We do not see a mathematical representation of reality very often in biology and medicine. It
should be noted that the process of formalization, i.e. the translation of a purely verbal description of
a given network of relations into the formalized language of mathematics, is delayed in biological and
medical sciences in comparison with engineering sciences, physics or chemistry. While the process of
formalization in physics started as early as the seventeenth century, in medical and biological sciences
it has been relatively delayed due to the complicacy and complexity of biological systems and has only
advanced with cybernetics and computer technology. The methodological tool here is computer models
built on a mathematical description of biological reality.

Formalized descriptions in physiology have been used since the late sixties (since the pioneering
works of Grodins et al., 1967, describing respiration). Guyton’s model was the fi rst extensive mathematical
description of the physiological functions of interconnected body subsystems and launched the fi eld of
physiological research that is sometimes described as “integrative physiology” today. Just as theoretical
physics tries to describe physical reality and explain the results of experimental research using formal
means, “integrative physiology” strives to create a formalized description of the interconnection of
physiological controls based on experimental results and explain their function in the development of
various diseases.

From this point of view, Guyton’s model was a milestone, trying to adopt a systematic view of
physiological controls to capture the dynamics of relations between the regulation of the circulation,
kidneys, the respiration and the volume and ionic composition of body fl uids by means of a graphically
represented network.

 Guyton’s graphical notation of a formalized description of physiological relations provides a
very clear representation of mathematical correlations – the blocks in network nodes represent graphical
symbols for individual mathematical operations and the wires represent individual variables. Guyton’s
graphical notation was soon adopted by other authors – such as Ikeda et al. (1979) in Japan and Amosov
et al. (1977) in the former USSR.

However, the graphical notation of the mathematical model using a network of interconnected
blocks was only visualization when created – Guyton’s model and later modifi cations (as well as the
models of other authors that adopted Guyton’s representative notation) were originally implemented in
Fortran and later in C++.

Today’s situation is different.

MEFANET 2009

5

Today, there are specialized software simulation environments available for the development,
debugging and verifi cation of simulation models, which allow creating a model in graphical form and
then testing its behaviour. One of these is the Matlab/Simulink development environment by Mathworks,
which allows building a simulation model gradually from individual components – types of software
simulation elements that are interconnected using a computer mouse to form simulation networks.
Simulink blocks are very similar to the elements used by Guyton for the formalized representation of
physiological relations. The only difference is in their graphical form (see Fig. 4).

This similarity inspired us to use Simulink to revive Guyton’s good, classic diagram and transform
it into a working simulation model. When implementing the model in Simulink, we used switches that
allow us to connect and disconnect individual subsystems and control loops while the model is running.
We strove to keep the appearance of the Simulink model identical to the original graphic diagram – the
arrangement, wire location, variable names and block numbers are the same.

The simulation visualization of the old diagram was not without diffi culties – there are errors in
the original graphic diagram of the model! It does not matter in the hand-drawn illustration but if we
try to bring it to life in Simulink, the model as a whole collapses immediately. There weren’t too many
errors – switched signs, a divider instead of a multiplier, mixed-up interconnections between blocks,
a missing decimal point in a constant, etc. However, there were enough to prevent the model from
working. Some of the errors could be seen at fi rst sight (even with no knowledge of physiology) – it
is obvious from the diagram that the value of some variables in some integrators would quickly grow
to infi nity in operation (because of incorrectly drawn feedback) and the model would collapse. With a
knowledge of physiology and system analysis, however, all of the errors could be identifi ed with some
work (Fig. 5). A detailed description of the errors and their corrections is in Kofránek et al. 2007).

Figure 6: The implementation of Guyton’s model in Simulink preserves the original arrangement of
elements in Guyton’s graphic diagram.

NON-MUSCLE OXYGEN DELIVERY

269

268

261

260

270

262

263

264

271

272

265

266

267

259

258

257

256

255

POV

OSV

POT

RDO

MO2

DOB

QO2POTP1O

P4O

02M

AOM

271

NON-MUSCLE LOCAL BLOOD FLOW CONTROL

if (POD<0) {POJ=PODx3.3}

278 277 276 275 274 273

285 282 281 280 279

290

284

283
284b286287

288

289

AR1

AK1

POB

POK

POD

POV

ARM

AR1
AR3

PON

POA

A2K

AR2

POJ

POZ

POC

A3K

AR3

POR

VASCULAR
STRESS

RELAXATION

65

64

63

62
61

VV7

VV7

VV1

VV2

VVE

SRK

VV6

195

196

197

198

199

200

201

202

203

205
206

207

208

209

210

211

212

213 214

215

216

217

218

219

220

221

222

KIDNEY DYNAMICS AND EXCRETION
THIRST AND DRINKING

192 193 194

190 191

Z10 Z11

STH

TVD

POT

ANTIDIURECTIC HORMONE CONTROL

181

180179
178177

175 176 182
183

184

185

158A

186

187

188
189

AHM AH4

AH2 AH1

AHC

AH

CNZ

CN8

CNR

CNA

PRA
AHZ

AH7

AHY

AH8AU

CIRCULATORY DYNAMICS

VIM

AUM

AUM

VIM

AUM

BFN1
2

3

4

36

35

31

32
33

PGS

RSM

38

34

37

RVS

43

42 41A

41

40

39

VBD

VVE

5 6

7 8 9

DAS

QAO30

QLO

LVM

HPL
HMD

QLN

29
59

58

28

50

16

PA2

60

PLA

24

25

26

27

VVS

QLO

AUH

HMD

QRO

QRO

AUH

VPE
PPA

PL1

PPA

RPV

RPT

RPT

PP1

54
53

55
56

57

52

51

23
22 21

20
19 18

48
49

46
45

47

44

10

11

12

13

14
15

LVM

CAPILLARY MEMBRANE DYNAMICS
66

67

68

69

70 71

74
73

62
61

80

79

7877

75

74

72

RVS

BFN
PVG

PVS

VB

VP

VRC

PTC

PPC
PIF

CFC

VPDVUD

DFP

TVD

VP

CPK
CPI

CP1

CPP

CPP PRP

VP

CPR
LPK

DLP

PPD

DP0

DPL

DPP

DPC

ANGIOTENSIN CONTROL

154 155 156 157 158

159

160161

162163

153b
153a

CNA CNE
ANM

AN1

ANT

ANC

AN2
AN3

AN5
ANM

REK

RFN

TISSUE FLUIDS, PRESSURES AND GEL

105
PTC

108

107

106

109

104

110

103102

112

113

98

97

96

99

929190
89

93
94 95

100

101

86

85

84

83
87

88

111

DPL

VTL

CPI

PIF

PLD

PTT

GP1

GPD

GPR

VG

VIF PTS

PIF

GPD

DPL

VTC

VTL

VID

VTS

VTD

PTT

DPI
VIF

IFP

GP2

VGD

VG

V2D

PG2
PGC

PTC

PIF

PIFPTS

PRM
CHY

HYL

VG

PGR

PGP

PGH

ALDOSTERONE CONTROL

165 166

167

164

168

169

170

171

172173174
AM AM5

AM3
AM2

AMC

AMT

AM1AMP

KN1CKE

CNA

ANM

AMR

ELECTROLYTES AND CELL WATER

114 115

116

117 118
119

120

121

126

125

122
123 124

127

128129130

131

135134133

132
CKI CCD

CNA
VIC

VID
VIC

KI

KCD KIE KIR

KE1

AM

CKEKE
KED

KCD

KID

KOD

REK

NED
NAE

CNA

VTW

VIC

VEC

STH
NID

VP

VPF

VTS

HEART HYPERTROPHY OR DETERIORATION

340

341

342

343

344 349

348

347

346

345

350

351

352

PA

PPA4

HPL
HPR

PP3

PPA
HSL HSR

POT

DHM

HMD

RED CELLS AND VISCOSITY

329

330

331

332

333
334

335

336

337

338

339
POT

PO1

POY

PO2

RC1

RCD

VRC

RKC

RC2
VRC

VB

HM

HM2

VIE

VIM

336c

336b

PULMONARY DYNAMICS AND FLUIDS

PLA

136

137

138

139

140

141

142

143

144

145
152

146

147

148

149

150

151

PPA

PCP

PPC

POS

PPI

CPF

PFI

PLF

DFP VPF

PPI

PLF

PLF

PPO

POS

CPN

VPF
PPR

PPD

PPN

PPC

CPP

AUTONOMIC CONTROL

292
291

294
293

296
297298

295

307
303302

301

305

304
308

309

310
311

312

313

315

314

316317

318
319

320

POQ
POT

PA

EXE

POQ
P2O

Z12
EXC

AUCPA1

A1B

AUB

AUN

AU8

AUK AU2

AU6

DAU

Z8

AUJ

AUL
VV9

VVR

AUH

AUM

AVE

AUY

AUD

AUV
AU9

AU

HEART RATE AND STROKE VOLUME

328
327 323

322

321324
325326

SVO

QLO

HR

PRA

AU
HMD

MUSCLE BLOOD FLOW CONTROL AND PO2

227

226

225

224

223

228

229

230

231

232

233

234

235

238
236

237239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

OSA

OVA

BFM

RMO

BFM

PK1

PK2

DVS

PVO

PMO

PM5

RMO

QOM

PMO

PM3

PK3

PM4

P2O

P3O

EXC

AOM

02A

AU
AMM

POE

POM

PDO

PVO

POV

POT

ARM

OVA

P2O

AOM

AMM

AMM

VVE

VV7

VUD

RBF

RFN

NOD

AU

VVR

AUH

AUM

AVE

SVO

HM

BFN

VPF
HM

OVA

PPC
REK

CNEAUM AHM

AM

AHM

PA

NOD

DPC

AUZ

ARM

VIM

AUM

ANM
AVE

RBF

PC

VVR

VV7

AUH

HMD

HSR

HPR

STH

TVD

VTL

AHM

ANM

CNE

AM

VID

CKE

CNA

VTW

PC
VB

VP

DPC

CPP

VTC

VTL

DPL

PTC

CPI

VTS

PIF

HPR

HPL

HMD

VIM

HM

VRC

DFP

VPF

PPD

BFN

BFM

RVS

PVS

PRA

QLO
PLA

PPA

PA

HSL

PPC
VTC

PC

GP3
APD

algebraic
loop

breaking

algebraic
loop

breaking

upper limit 8

upper limit 8
lower limit 4

upper limit 8

upper limit 15.0
lower limit 0.4

upper limit 1

lower_limit_0

lower limit 6

lower limit 50

lower limit 5

lower limit 4

lower limit 3

lower limit 0.95

lower limit 0.7
lower limit 0.5

lower limit 0.3

lower limit 0.2375

lower limit 0.2

lower limit 0.0003

lower limit 0.0001

lower limit 0

lower limit 0

lower limit .005

lower limit .001

12

12

171

3

210

1

0

2

2400

1600

1

1

1

75

25

2130

3550

1

11.4

0.7

0

1

0.7

1

1

2400
Xo

0
0

1.4

50
RVM = f(PP2)

30.5

RAR

96.3

RAM

0
-4

15

20

QRN = f(PRA)

0.6

QRF

0
-4

15

20

QLN = f(PLA)

(u/12)^2PTT = (VTS/12)^2

0
0

20

10
PTS = f(VIF)

2-(0.15/u) PPI = 2 - (0.15/VPF)

u^0.625 PP3^0.1

u^3 POT^3

0.33

u^2PM1^2

u^3

PC^3

u^0.625 PA4^0.625

u^3 P40^3

u^3P3O^3

10u

10u

sqrt

10u

0
0

1.4

260
LVM = f(PA2)

1
sxo

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s

xo

1
sxo

1
s

xo

1
s xo

1
s

xo

1
s

xo

1
s

xo
1
s

xo

1
s xo

1
sxo

1
s xo

1
s xo

1
s xo

1
s xo

1
s

xo

1
s xo

1
s

1
s

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s xo

1
s

5

GF4

0.01095

0.3229

0.9898

2.86

99.95

1

15.22

0.02255
5.085

0.09914

3.781

2.782

1.014

2.86

6.822e-008

0.01252

40

-3.994e-010

2

40

0.9897

1

1

1.001

-6.328

11.99

20.17

7.987

5.043

0.03825
0.001896

0.001897

16.81
69.78

0.03838

3.004

5.004
16.81

198.7

40

142

5

1.115e-006

1.003

10

1.004

0.9999

0.001001

1.002

0.9456

0.0704

1

1.001

1

2.949

1.001

0.1003

1.211

1.211

0.001007

7.999

0.0005

4.0

3.3

0.042

150.1152

1.6379

0.00047

85

512

0.007

1.6283e-007

0.007 0.4

0.1

1.79

0.4

0.4

0.003550.495

5

2.738

1

0.026

1

0.035720

0.85

0.0048
0.30625

3.25

5

1717

1

0.38

0.005
0.1

0.1

100

1

0.0007

0.00333

2

1

139

0.3333

0.0785

6

0.14

6

8.25 4

57.14

0.009

0.01

1

1

1

0.125

0.00781

18
51.66

31.67

8.0001

0.0250.001

1000

0.8

1

33

0.5

11

15

0

5

100

1

2.8

0

0.301

0.3

2.9

3.7

28

5
17

0.002

0.04

70

3

0.3

1

1

2.95

1

1

1

0

0

0.0125

40

0.1

2688

1

2

1 1

1

20

-6.3

0.04

0.002

5

1

12

142

5

0

1

10

1

1

0

1

20

1.2

1.2

0.1

0.001

0

1

0.04

20

0

0.002

1

0.001

0

5

-6.3

2

3.72.8

2.9

0.001

1

0.06

1

51

1

1

1

0

2.95

17

1.2

40

1

1

1

1

1

1.6

40

1

1

8

1

8

100

5

0

1

1

70

28

0

15

1

5

8

8

8

200

15100

0.04

0

0.002

1

12

3

0.0125

1

0.1

8

1

142

5

100

11520

1

1.2

142

40
1

8

142

0

1

1

1

168

1

1

10

1

1
28

100

0.3

1

1

1

1

40
0.0125

200

2.8

40

1

800

2500

122

1

57.14

5

0.5

1

8
40

0.08

5
1

0.25

0.15

1

32

0.5 1

40

2

0.21

6

0.0005

1

1

1.24

1

8

3

1

0.5

1

0.85

0.15

0.7

60

0.3

3.159

8

0.4

0.375

0.000225

0.0003

11

0.0003

0.4667

1

0.0125

0.55

40

0.333
1.5

0.00092

8.25

100

0.0000058

464e-7

512

0.0025

6

57600

15

57600

100

2850

0.01

140

0.013

8.0001

0.0028

0.00014

0.00042

0.1

0.00352

20.039

19.8

-0.017

60

9

-1

0.25

24.2

-5.9

57

0.4

0.1

0.004
7.8

0.25

0.013332

51

0.0825

CV

6

CNY

2.5

CNX

0.2

CN7

0.0212

CN2

u^2 CHY^2

PA1 AUN

AUN CALCULATION

 when PA1<50: AUN=6
 when 20>PA1<50: AUN=0.2*(50-PA1)

 when PA1>=50: AUC=0

AUN calculation

uv

AUJ^AUZ

PA1 AUC

AUC CALCULATION

 when PA1<40: AUC=1.2
 when 40>PA1<80: AUC=0.03*(80-PA1)

 when PA1>=80: AUC=0

AUC calculation

u^3 AUB^3

PA1 AUB

AUB CALCULATION

 when PA1<40: AUB=1.85718
 when 40>PA1<170: AUB=0.014286*(170-PA1)

 when PA1>=170: AUB=0

AUB calculation

1.5

ARF

0 0

4

200
AMP = f(PA)

1

(1.2/u)^3

(1.2/RFN)^3

1
s

xo

 VVS

1
s

xo

 VRA

1
s

xo

 VPA

1
s

xo

 VLA

1
sxo

1
s

xo

1
s

xo

 VAS31
sxo

1
s xo

1
s xo

lower limit 0.35

lower limit 0

VIM

VIM

AAR

AAR

AAR

RR

RFN

GLP

PPC

PFL

GFN

GFR

TRR

VUD

AHM

AM

AM

NOD

EVR

RBF

ANU

ANU

RAR

VAS

VAS VAE

PA

PA

PAMPAM

RAM

PGS
RSN

BFM

QAO

RV1

RV1

VVS VV8

PVS

PVS

PVS

PVS

QVO

QVO

QVO

DVS

QLO

QLN

QLN

DLA

VLA

VLA

VLE

PLA

PLA

PLA

VB

RVM

RVM

QRN

RVG

DRA

VRA

VRA

PRA

PRA

PR1

PR1

PP2

VPA

VPA
PGL

QPO

QPO

RPA

CPA

RFN

GF3

GF3

MEFANET 2009

6

It is interesting that Guyton’s diagram as a complex drawing was reprinted many times in various
publications (recently see e.g. Hall, 2004, Van Vliet and Montani, 2005). However, nobody mentioned
the errors or made an effort to correct them. This was understandable at the time the diagram was created.
Drawing software did not exist – the diagram was created as a complex drawing – and redrawing the
complex diagram manually was not easy. It is also possible that the authors of the model did not wish
to correct the errors – those who went to the trouble of analyzing the model could spot the drawing’s
“typos” and those who would just like to unthinkingly copy the diagram were out of luck. After all, the
authors used to send out the source codes of Fortran programs for their model – so if anybody wished
just to test the behaviour of the model, they did not have to program anything (at most, they had to
routinely convert the program from Fortran to another programming language).

Our Simulink implementation of Guyton’s (corrected) model (Figs. 6 and 7) is available for
download at www.physiome.cz/guyton. Also available at that address is our Simulink implementation
of a much more complex, later model from Guyton et al. There is also a very detailed description of all
applied mathematical relations with an explanation.

Block-oriented simulation networks
Guyton’s block diagram augured the rise of visual, block-oriented simulation languages. However,

Guyton and his colleagues implemented the model in Fortran back in 1972 – Simulink version 1 was
released eighteen years later (in 1990). Block-oriented simulation languages, of which Simulink is a
typical example, allow assembling computer models from individual blocks with defi ned inputs and

CIRCULATORY DYNAMICS

VIM

AUM

AUM

VIM

AUM

BFN1
2

3

4

36

35

31

32
33

PGS

RSM

38

34

37

RVS

43

42 41A

41

40

39

VBD

VVE

5 6

7 8 9

DAS

QAO30

QLO

LVM

HPL
HMD

QLN

29
59

58

28

50

16

PA2

60

PLA

24

25

26

27

VVS

QLO

AUH

HMD

QRO

QRO

AUH

VPE
PPA

PL1

PPA

RPV

RPT

RPT

PP1

54
53

55
56

57

52

51

23
22 21

20
19 18

48
49

46
45

47

44

10

11

12

13

14
15

LVM

AMM

VVE

ARM

VIM

AUM

ANM
AVE

RBF

PC

VVR

VV7

AUH

HMD

HSR

HPR

BFN

BFM

RVS

PVS

PRA

QLO
PLA

PPA

PA

HSL

algebraic
loop

breaking

lower limit 4

lower limit 0.95

lower limit 0.0001

lower limit 0

0

0
0

1.4

50
RVM = f(PP2)

30.5

RAR

96.3

RAM

0
-4

15

20

QRN = f(PRA)

0.6

QRF

0
-4

15

20

QLN = f(PLA)

sqrt

0
0

1.4

260
LVM = f(PA2)

1
s xo

0.3229

99.95

15.22

0.02255
5.085

0.09914

3.781

2.782

1.014

2.86

0.1

1.79

0.4

0.4

0.003550.495

2.738

1

0.026

1

0.035720

0.85

0.0048
0.30625

3.25

1717

1

0.38

0.005
0.1

0.1

100

15

0

5

100

1

2.8

0

0.3

2.9

3.7

1

1

51

1

1

1

0

2.95

17

1.2

1

1

1

1

1

1.6

0.0825

CV

0.2

CN7

0.0212

CN2

1

1
s

xo

 VVS

1
s

xo

 VRA

1
s

xo

 VPA

1
s

xo

 VLA

1
s

xo

 VAS3

ANU

ANU

RAR

VAS

VAS VAE

PA

PA

PAMPAM

RAM

PGS
RSN

BFM

QAO

RV1

RV1

VVS VV8

PVS

PVS

PVS

PVS

QVO

QVO

QVO

DVS

QLO

QLN

QLN

DLA

VLA

VLA

VLE

PLA

PLA

PLA

VB

RVM

RVM

QRN

RVG

DRA

VRA

VRA

PRA

PRA

PR1

PR1

PP2

VPA

VPA
PGL

QPO

QPO

RPA

CPA

Figure7: More detailed central structures of the Simulink implementation of Guyton’s model,
representing fl ows through aggregated parts of the circulatory system and the activity of the heart as a

pump.

MEFANET 2009

7

outputs. The blocks are grouped in libraries; when building a model, a computer mouse is used to create
individual block instances, with inputs and outputs connected through wires that “conduct” information.

A Simulink network can be arranged hierarchically. Blocks can be grouped into subsystems
that communicate with their ambient environment through defi ned input and output “pins”, making
“simulation chips” of a sort. A simulation chip hides the simulation network structure from the user,
much like an electronic chip hiding the interconnection of transistors and other electronic elements.
Then the user can be concerned just with the behaviour of the chip and does not have to bother about
the internal structure and calculation algorithm. The behaviour of a simulation chip can be tested by
monitoring its outputs using virtual displays or virtual oscilloscopes connected to it. This is very useful
especially for testing the behaviour of a model and expressing the mutual relations of variables.

The entire complex model can be then visualized as interconnected simulation chips and the
structure of their interconnection clearly shows what effects are taken into account in the model, and
how (Figs. 8–11).

This is very useful for interdisciplinary collaboration – especially in borderline fi elds such as
biomedical system modelling (Kofránek et al., 2002). An experimental physiologist does not have to
examine the details of mathematical relations hidden “inside” a simulation chip; however, from the

Figure 8: An example of a simulation chip
(here representing the simulation model

that is the basis for the GOLEM simulator
(Kofránek et al., 2001). Its behaviour can be

tested easily in the Simulink environment
– input values (or value patterns) can be
fed to the “input pins” and outputs or the

time behaviour of outputs can be read
out from the “output pins” by means of

virtual displays or oscilloscopes. The next
illustration shows the inside of this chip.

Figure 9: The “inside” of the simulation chip from
the previous illustration. The structure resembles

an electric network with interconnected integrated
circuits, which represent simulation chips of a lower

hierarchical level here. The next illustration shows the
contents of the “Blood Acid Base Balance” chip.

MEFANET 2009

8

mutual interconnection of simulation chips they will understand the model structure and will be able to
check its behaviour in the appropriate simulation visualization environment.

Simulation chips can be stored in libraries and users can create their instances for use in their
models (Fig. 12). For example, we created a Physiolibrary for modelling physiological regulations
(http://www.physiome.cz/simchips).

Hierarchical, block-oriented simulation tools are thus used advantageously in the description of
the complex regulation systems that we have in physiology. A formalized description of physiological
systems is the subject matter of PHYSIOME, an international project that is a successor to the GENOME
project. The output of the GENOME project was a detailed description of the human genome; the goal
of the PHYSIOME project is a formalized description of physiological functions. It uses computer
models as its methodological tool (Bassingthwaighte, 2000; Hunter et al., 2002).

Several block-oriented simulation tools developed under the PHYSIOME project have been used
as a reference database for a formalized description of the structure of complex physiological models.
These include JSIM (http://www.physiome.org/model/doku.php) and CEllML (http://www.cellml.org/).
Prof. Guyton’s disciples and followers have expanded the original, extensive simulator of the circulatory
system (Quantitative Circulatory Physiology (Abram et al. 2007) with an integrated connection of all
important physiological systems. The latest result is the Quantitative Human Physiology simulator (Hester
et al. 2008), now also distributed as “Digital Human”, which represents today’s most comprehensive

Figure 10: Simulation chips are arranged hierarchically. The illustration shows the “inside” of
one of the simulation chips from Fig. 9. Since each simulation chip includes suffi ciently detailed

documentation of its inputs and outputs, the structure of relations inside a simulation chip
(representing the physiological relations in a real organism) can be understood by physiologists. The

next illustration shows the contents of the “BEINV” chip.

MEFANET 2009

9

and largest model of physiological functions. The model can be downloaded from http://physiology.
umc.edu/themodelingworkshop/. The authors developed a special block-oriented simulation system to
represent the complex model structure.

Causal and acausal approaches
Block-oriented tools work with hierarchically interconnected blocks. The connections between

blocks “conduct” signals that transmit the values of individual variables from the output of a block to
the inputs of other blocks. The blocks process input information into output information.

The hierarchically arranged block-oriented description clearly shows how the values of individual
variables are calculated in the model – i.e. what the calculation algorithm is.

Figure 12: Simulation chips can be gathered in
hierarchically arranged libraries in Simulink. It
is then possible to use the mouse to “pick up”

individual chips from the libraries (as from a tool
palette), place them into the created application,

interconnect them and create more complex models.Figure 11: Structure of the BEINV simulation
chip. Simulation chips at the lowest hierarchical

level consist in interconnected elementary
components of the Simulink development
systems (adders, multipliers, integrators,

etc.) and possibly simulation chips of further
lower levels. These interconnected elements
represent individual mathematical relations.

Usually, each chip is dynamically linked with
the appropriate documentation page including

a factual description of the chip’s function,
including a description of the mathematical

relations that constitute its basis.

Figure 13 The “Glomerular Filtration” simulation
chip calculates the glomerular fi ltration rate. The
structure of calculation is hidden from the user.

However, there must be no algebraic loops inside a
chip.

R AP

Af f C

TubC

R BF

R PF

APr

GKf

GFR

G L O M E R U L A R F I L T R A T I O N

INPUT S :
RAP - Renal artery pressure[torr]

Affc - A fferent artery conductance [m l l /m in/torr]
T ubC - Proxim al tubu le conductaqnce [m l /m in/torr]

RBF - Renal b lood flow [m l /m in]
RPF - Renal p lasm a flow

APr - P lasm a prote in concentra tion (in a fferent artery) [g /m l]
GKf - Glom eru lar fi l tra tion coeffi tient [m l /m in/torr]

OUT PUT :
GFR - Glom eru lar fi l tra tion ra te [m l /m in]

Calculation of glomerulal filtration rate

MEFANET 2009

10

However, the interconnection of blocks in a network of relations cannot be completely arbitrary.
Interconnected elements may not include any algebraic loops – i.e. cyclic structures where an input
value fed to the input of a calculation block depends (through several intermediate blocks) on the block’s
output value in the same time step.

For illustration, let us consider the small example of an algebraic loop in Simulink, a block-

RPF - Renal plasma flow [ml/min]

GKf - Glomerular filtration coeffitient [ml/min/torr]

GFR - Glomerular filtration rate [ml/min]

AVeCOP - Average colloid osmotic pressure [torr]

ECOP - Efferent colloid osmotic pressure [torr]

APr - Afferent protein concentration [g/ml]

EPr - Efferent protein concentration [g/ml]

GFR - Glomerular filtration rate [ml/min]

PTP - Proximal tubule pressure [torr]
TubC - Tubule conductance [ml/min/torr]

FF - Filtration fraction [relative number]

AffC - Afferent artery conductance [ml/min/torr]

RBF - Renal blood flow [ml/min]

ACOP - Afferent colloid osmotic pressure [torr]

GFR - Glomerular filtration rate [ml/min]

RAP - Renal artery pressure [torr]

GKf - Glomerular filtration coeffitient [ml/min/torr]

NETP - Net pressure gradient in glomerulus [torr]

PAff - Afferent artery pressure [torr]

GP - Glomerulal pressure [torr]

simulation chip: G L O M E R U L A R F I L T R A T I O N

1

GFR

PTP = GFR/TubC

PAff=RBF*AffC

NetP = GP - PTP - AVECOP

GP = RAP - PAff

GFR = NETP*GKf

FF = GFR/RPF

EPr = APr / (1-FF)

ECOP = A*Epr + B*(EPr)̂ 2

1160

B - Landis-Pappenheimer
coeffitient [torr/g/ml]1

B * (Epr)̂ 2

B * (Apr)̂ 2

AVeCOP = (ACOP+ECOP)/2

ACOP+ECOP

ACOP = A*Apr + B*(APr)̂ 2

A*Epr

A*Apr

320

A - Landis-Pappenheimer
coeffitient [torr/g/ml]

1 - FF

u2

(EPr)̂ 2

u2

(APr)̂ 2

2

1

7

GKf

6

APr

5

RPF

4

RBF

3

TubC

2

AffC

1

RAP

GP

PAf f

RAP
GKf

FF=GFR/RPF

GFR

RPFRPFRPFRPF

APrAPrAPrAPr

B
A

RBFRBFRBF

AffCAffCAffC

TubCTubCTubC

RAPRAPRAP

GFR=NETP*GKf

NETP=GP-PTP-AVeCOP

PTP=GFR/TubC

PAff=RBF/AffC
GP=RAP-PAff

ACOP=A*Apr+B*(APr)^2A*Apr

B*(APr)^2

EPr=APr/(1-FF)

(1-FF)

EPr^2

A*EPr

B*EPr^2

ECOP=A*EPr+B*EPr^2

ACOP+ECOP

AVeCOP=(ACOP+ECOP)/2

AVeCOP
PTP

GP

GFR

TubC

GFRGFRGG11

GFRGFRGFR
GKf

GKfGKfGKf

Figure 14: The interconnection of individual blocks inside the “Glomerular Filtration” simulation chip
graphically represents individual mathematical relations for the calculation of the glomerular fi ltration

rate. However, there is an algebraic loop. It is necessary to break the loop.

Figure 15: Breaking the algebraic loop in the calculation of the glomerular fi ltration rate. The
interconnection of Simulink blocks refl ects the calculation procedure rather than a graphical

representation of mathematical relations.

RPF - Renal plasma flow [ml/min]

GKf - Glomerular filtration coeffitient [ml/min/torr]

GFR - Glomerular filtration rate [ml/min]

AVeCOP - Average colloid osmotic pressure [torr]

ECOP - Efferent colloid osmotic pressure [torr]

APr - Afferent protein concentration [g/ml]

EPr - Efferent protein concentration [g/ml]

GFR - Glomerular filtration rate [ml/min]

PTP - Proximal tubule pressure [torr]
TubC - Tubule conductance [ml/min/torr]

FF - Filtration fraction [relative number]

AffC - Afferent artery conductance [ml/min/torr]

RBF - Renal blood flow [ml/min]

ACOP - Afferent colloid osmotic pressure [torr]

GFR - Glomerular filtration rate [ml/min]

RAP - Renal artery pressure [torr]

GKf - Glomerular filtration coeffitient [ml/min/torr]

NETP - Net pressure gradient in glomerulus [torr]

PAff - Afferent artery pressure [torr]

GP - Glomerulal pressure [torr]

simulation chip: G L O M E R U L A R F I L T R A T I O N

1

GFR

PTP = GFR/TubC

PAff=RBF*AffC

NetP = GP - PTP - AVECOP

GP = RAP - PAff

GFRold - GFRnew

GFR = NETP*GKf

FF = GFR/RPF

EPr = APr / (1-FF)

ECOP = A*Epr + B*(EPr)̂ 2

1160

B - Landis-Pappenheimer
coeffitient [torr/g/ml]1

B * (Epr)̂ 2

B * (Apr)̂ 2

f (z) z
Solve
f(z) = 0

Algebraic Constraint

AVeCOP = (ACOP+ECOP)/2

ACOP+ECOP

ACOP = A*Apr + B*(APr)̂ 2

A*Epr

A*Apr

320

A - Landis-Pappenheimer
coeffitient [torr/g/ml]

1 - FF

u2

(EPr)̂ 2

u2

(APr)̂ 2

2

1

7

GKf

6

APr

5

RPF

4

RBF

3

TubC

2

AffC

1

RAP

GP

PAf f

RAP
GKf

FF=GFR/RPF

GFR

RPFRPFRPFRPF

APrAPrAPrAPr

B
A

RBFRBFRBF

AffCAffCAffC

TubCTubCTubC

RAPRAPRAP

GFR=NETP*GKf

NETP=GP-PTP-AVeCOP

PTP=GFR/TubC

PAff=RBF/AffC
GP=RAP-PAff

ACOP=A*Apr+B*(APr)^2A*Apr

B*(APr)^2
(APr)^2

EPr=APr/(1-FF)

(1-FF)

EPr^2

A*EPr

B*EPr^2

ECOP=A*EPr+B*EPr^2

ACOP+ECOP

AVeCOP=(ACOP+ECOP)/2

AVeCOP
PTP

GP

GFR

TubC

GFRGFRGG11

GFRGFRGFR
GKf

GKfGKfGKf

GFRold-GFRnew

Algebraic Constraint
NETP

MEFANET 2009

11

oriented language.

A model of the kidneys uses a simulation chip calculating the glomerular fi ltration rate. The
individual inputs and outputs of that chip are shown in Fig. 13. The inside of the simulation chip consists
in elementary blocks performing mathematical operations. The value of GFR, a variable representing
the glomerular fi ltration rate, is calculated from the value of NETP; to calculate NETP it is necessary
to know the value of PTP, which is however calculated as the quotient of GFR and TUBC (Fig. 14).
Our Simulink diagram contains an algebraic loop that must be broken. Therefore we solve an implicit
equation in the blocks identifi ed as “Algebraic Constraint” in Fig. 15 to calculate GFR in each integration
step.

Therefore, a Simulink network does not constitute the graphical representation of mathematical
relations in a model; rather, it is the graphical representation of a chain of transformations from input
values to output values through Simulink elements where loops are not allowed.

If we focus on the representation of a structure of mathematical relations rather than the algorithm
of calculations when building a model in Simulink, we can easily introduce algebraic loops into the
model (however, the compiler will warn us about this). There are methods that can be used to get rid of
algebraic loops (e.g. see Dabney and Harman , 2004) – however, they lead to transformations that make
the model structure even more complex and the model more diffi cult to understand. The need to have a
fi xed direction of connection from inputs to outputs with no algebraic loops also makes model building
more diffi cult.

The interconnection of blocks in Simulink thus refl ects the calculation procedure rather than the
actual structure of the modelled reality. We call this causal modelling.

In complex systems, the physical reality of the modelled system becomes somewhat lost under

ee

R

e=Rf

pp qq

L

p=Lf

C
q=Ce

f

de
dt

d

dq
/dt

df
dt

dp
/dt

f=e/R

f=p/L

e=q/C

• e means generalized effort – corresponding to
force in mechanics, voltage in electrical diagrams,
pressure in hydraulics, etc.

• f is generalized fl ow – corresponding to velocity in
mechanics, current in electrical diagrams, fl ow rate
in hydraulics, temperature fl ow in thermodynamics,
etc.

• q is generalized accumulation or defl ection,
representing the integral of the generalized fl ow.
It corresponds e.g. to the stretching of a spring
in mechanics, fl uid volume in hydraulics, charge
in electrical diagrams, accumulated heat in
thermodynamics, etc.

• p is generalized momentum (inertance) – the
integral of the generalized effort, representing
kinetic energy; in hydraulics it represents the
change of the fl ow rate proportional to the pressure
difference (fl ow momentum), in electrical circuits it
is the potential needed to change an electric current
(induction), etc.

• R, C and L represent constants of proportionality
between the generalized system properties. They
correspond e.g. to resistance, capacitance or weight.

Generalized system properties:

Figure 16: Relations between generalized system properties.

MEFANET 2009

12

the structure of calculation with this approach.

New, “acausal” tools have recently been developed for the creation of simulation models. The
major innovation brought about by acausal modelling tools is the possibility to describe the individual
parts of a model directly as a system of equations rather than an algorithm for solving the equations.
The notation of models is declarative (we describe the structure and mathematical relations, not the
calculation algorithm) – thus the notation is acausal.

Acausal modelling tools work with interconnected components that are instances of classes in
which equations are directly defi ned.

The components (i.e. instances of classes with equations) can be interconnected by means of
precisely defi ned interfaces – connectors; this defi nes a system of equations.

The latest version of Simulink provides certain options for using acausal tools as well. Mathworks,
the producer of the Matlab/Simulink simulation tools, responded to the new trends by creating a
special acausal Simulink library – Simscape – and related domain libraries such as SimElectronics,
SimHydraulics, SimMechanics, etc.

A modern simulation language that is built directly on the acausal notation of models is Modelica
(Fritzson, 2003). It was originally developed in Sweden and is now available both in an open-source
version (developed under the auspices of Modelica Association, http://www.modelica.org/) and in two
commercial implementations.

The fi rst commercial implementation is made by Dynasim AB – which has been bought by
Dassault Systemes, a multinational corporation (sold under the name of Dymola, currently in version
7.1), and the other commercial implementation is made by MathCore (sold under the name of
MathModelica). Dynasim’s Modelica has a good connection to the Matlab and Simulink simulation
tools, while MathModelica can connect to the Mathematica environment made by WoModelica works
with interconnected components that are instances of individual classes. Unlike the implementation
of classes in other object-oriented languages (such as jw C# or Java), classes in Modelica have an
additional special section in which equations are defi ned.

The equations do not mean assignment (i.e. storing the result of the calculation of an assigned
command in a variable) but rather the defi nition of relations between variables (as is common in
mathematics and physics). For example, the following notations of relations between variables
expressing the resistance (R), fl ow (F) and pressure gradient (P) are equivalent:

F=P/R

P/R=F

P=R*F

R*F=P

R=P/F

P/F=R

Components (class instances) in Modelica can be interconnected by means of precisely defi ned
interfaces – connectors.

What is important is that the interconnection of components actually interconnects systems of
equations in the individual components with one another. By interconnecting Modelica components,
we do not defi ne the calculation procedure but rather the modelled reality. The method of solving the
equations is then “left to the machines”.

MEFANET 2009

13

Generalized system properties
The representation of a model in an acausal simulation environment resembles the physical reality

of the modelled world more than the standard interconnected block diagrams in causal modelling tools.
This is associated with the generalized system properties of the real world (Fig. 16), where an important
role is played by generalized effort (corresponding to force, pressure, voltage, etc. in the real world) and
generalized fl ow (corresponding to current, fl ow rate, etc. in the real world). The integral of generalized
fl ow is generalized accumulation or defl ection (in the real world, this can be e.g. an electrical charge
but also the volume of a liquid or gas, stretching of a spring, accumulated heat, etc.). The integral of
generalized effort is generalized momentum (this represents fl ow momentum in hydraulics, induction
in electrical circuits, etc.).

Also related to the generalized system properties is the fact that descriptions of models of
biological or physiological processes often use electrical or hydraulic analogies for reasons of clarity.

Let us illustrate the utilization of generalized system properties and the difference between
modelling in block-oriented simulation tools and in Modelica with a physiological reality modelling
example – a model of simple pulmonary ventilation mechanics.

Let us consider a simple pulmonary mechanics model that is schematically shown in Fig. 17.
With a high level of simplifi cation, the lungs can be seen as three bags interconnected through two tubes.
The lungs are connected to the fan of the artifi cial pulmonary ventilation equipment, which periodically
drives air into the lungs with the pressure PAO. P0 is the pressure of the ambient atmosphere. Airfl ow Q
runs through the upper respiratory tract that has the resistance RC. From the upper respiratory tract, air
forces its way through the lower respiratory tract to the alveoli. The resistance of the lower respiratory
tract is RP, the pressure in the central parts of the respiratory tract (at the boundary between the upper
and lower respiratory tracts) is PAW, the pressure in the alveoli is PA.

 Air expands the pulmonary alveoli, whose compliance is CL (as the total compliance of the
lungs). The interpleural cavity is in between the lungs and the rib cage. The pressure in it is PPL. The

Figure 17: A simple pulmonary mechanics model (hydraulic and electrical analogy).

RC RP
CL

CW

PPLPAPAW

CS

Q QA

Q-QA

RC RP

CS CL

CW

PAW
PA

PPL

PAO

P0

P0

QAQ

Q-QA

P0

PAO

MEFANET 2009

14

chest has to expand as well during artifi cial pulmonary ventilation when air is forced into the lungs – the
chest compliance is CW. The small portion of air that does not reach the alveoli expands the respiratory
tract instead – its compliance is CS.

Now we can set up our equations. According to Ohm’s law, it must be true that:

PAW PA RPQA
PAO PAW RC Q

 
  (1)

 The relation between the compliance, pressure gradient and volume (expressed as the integral of
the fl ow rate) is expressed by these equations:

 

1

1

1

PA PPL QAdt
CL

PPL P0 QAdt
CW

PAW P0 Q QA dt
CS

 

 

  





 (2)

According to the generalized Kirchhoff’s law, the sum of all pressures (voltages) along a closed
loop must be equal to zero, i.e. the following must hold true for the loop along the node PAW and along
the node PA0:

 () () () () 0PAW PA PA PPL PPL P0 P0 PAW       

 0)()0()( PAOPOPPAWPAWPAO (3)

Substituting from the equations for Ohm’s law and compliances, we get:

1 1 1 () 0

1 () () 0

RPQA QAdt Q QA dt
CL CW CS

Q RC Q QA dt P0 PAO
CS

         

     

 



(4)

Causal approach – implementation of the pulmonary ventilation mechanics model
in Simulink

When building a model in Simulink, we have to defi ne precisely the procedure of calculation
from input variables to output variables. If we wish to calculate the reaction of the air fl ow to/from the
lungs (Q) to the input – i.e. to the changes in pressure at the beginning of the respiratory tract (PAO)
caused by the artifi cial pulmonary ventilation apparatus – the Simulink model will look like Fig. 18.

We can also simplify the Simulink model. First we obtain a differential equation (input variable
PAO, output Q) from equationс (4):

2 2

2 2

1 1 1 1 1d PAO dPAO d Q RC dQRC Q
dt RP CT dt dt CS RPCT dt RPCS CL CW

           
   (5)

When we enter the numeric parameters of resistance (in units cm H2O/L/sec) and compliance (in
units L/cmH2O) (Khoo, 2000):

MEFANET 2009

15

 1; 0,5; 0, 2; 0, 2; 0,005RC RP CL CW CS    
(6)

the equation (5) simplifi es:

2 2

2 2420 620 4000d PAO dPAO d Q dQ Q
dt dt dt dt

   
 (7)

In the Laplace transform of the equation (7), we get:

2

2

() 420
() 620 4000

Q s s s
PAO s s s




  (8)

This allows simplifying the Simulink model (Fig. 19):

However, when the values of the parameters change, the transform function (6) must be
recalculated and the Simulink model will change.

Now we will make the model a little more complex by taking air inertia in the upper respiratory
tract into account (Fig. 20).

In addition, we will now take into account the inertial element LC=0.01 cm H2O s2 L-1:

Qs

Pao Q
QA

Paw
du/dt

dPaw/dt

Volume vs time

Ventilator

respm2.mat

To File

Sum3 Sum2

Sum1
Sum

0.5

Rp

Q vs timePao vs time

Mux

Mux

Memory

1/s
Integrator1

1/s
Integrator

-K-

CS

1

1/Rc

1/0.2

1/Cw

1/0.2

1/CL

PA

PAW

Figure 18: Simulink model implementation according to the equations (4).

MEFANET 2009

16

PLC dQ
dt




 (9)

where ∆P is the pressure gradient and dQ/dt is the fl ow acceleration, or:

dQP LC
dt

 
 (10)

Figure 19 Simulink model implementation using the Laplace transform according to the equation (7).

PAO

Q

Volume vs time
Ventilator

respm1.mat

To File

s +420s2

s +620s+40002

Respiratory Mechanics
Q vs time

PAO vs time

Mux

Mux

1/s
Integrator

RC RP
CL

CW

PPLPAPAW

CS

Q QA

Q-QA

RP=0,5

CS=0,005
CL=0,2

PAW
PA

PPL

PAO

P0

P0

QAQ

Q-QA

P0

RC=1

LC=0,01

LC

CW=0,2

Figure 20: A simple pulmonary mechanics model taking inertia into account (hydraulic and electrical
analogy).

MEFANET 2009

17

Then we get this instead of the system of equations (4):

 

 
2

2

1 1 1 0

1 0

dQARP QA Q QA
dt CL CW CS

dQ d Q dP0 dPAORC LC Q QA
dt dt CS dt dt

         

       (11)

Instead of the equation (7), we get:

Q

dt
dQ

dt
Qd

dt
Qd

dt
dPAO

dt
PAOd 40006202,501,0420 2

2

3

3

2

2

 (12)

and in the Laplace transform, we get:

40006202,501,0

420
)(

)(
23

2

sss
ss

sPAO
sQ

 (10)

This Simulink model will change (Fig. 21):

Since we always have to take into account the direction of the calculation in Simulink, the actual
Simulink diagram is rather dissimilar to the physical reality of the described system. Even a small
change in the model, such as the inclusion of the inertial element, requires careful calculation and a
change in the model structure. The model will change signifi cantly even if we consider spontaneous
breathing instead of artifi cial pulmonary ventilation. The model input will be not the pressure PAO
generated by the artifi cial pulmonary ventilation respirator but e.g. the compliance of the thoracic wall
CW (a cyclic variation in the compliance can be used to model the function of the respiratory muscles).

Acausal approach – implementation of the pulmonary ventilation mechanics model
in Modelica

Comparing the model structure in Figs. 17 and 20, formulated by means of generalized state
variables, to the implementation of the model in Simulink (Figs. 18, 19, 21), we can see that the
interconnected blocks in Simulink express the structure of the calculation procedure rather than the

PAO

Q

Volume vs time
Ventilator

respm1.mat

To File

s +420s2

0.01s +5.2s +620s+40003 2

Respiratory Mechanics

PAO vs time

Mux

Mux

1/s
Integrator

Flow vs time

Figure 21: Simulink model implementation using the Laplace transform according to the equation
(10).

MEFANET 2009

18

structure of the modelled reality.

In Modelica, this is different.

Acausal modelling tools, of which Modelica is a typical example, work with interconnected
components that are instances of special classes in which equations are defi ned. When modelling in
Modelica, the fi rst task is to formally express the modelled reality by means of equations.

In our simple pulmonary mechanics model, we describe the resistances of the respiratory tract,
expansible elastic bags, and we might take into account air fl ow inertia (see Figs. 17 and 20). The
description of the air fl ow in the lungs belongs in the pneumatic domain. However, if we disregard
the compressibility of gases, we can describe the model using the hydraulic domain. The same formal
expression can be provided by an electrical analogy.

ResistorResistorResistor

R*i = v

i = C*der(v) L*der(i) = v

v v

v

v = p.v n.v

Capacitor
Inductor

p.v
n.v

v = p.v n.vp.v
n.v

v = p.v n.vp.v
n.v

p.i

p.i
p.i n.in.i

n.i

i = p.i = n.i

i = p.i = n.i

i = p.i = n.i

p.v
p.i

p.v
p.i

p.v
p.i

n.v
n.i

n.v
n.i

n.v
n.i

Figure 22: The hydraulic and electric elements are from different domains but have the same formal
description. The analogy of voltage (v) in the hydraulic domain is pressure, the analogy of current (i)
in the hydraulic domain is a stream of fl uid (and a stream of gas in the pneumatic domain). Hydraulic

resistance (R) follows Ohm’s law in the same way as electric resistance (the voltage difference is
just replaced with the pressure gradient and the current is replaced with the fl ow rate). The hydraulic
analogy of a capacitor is an elastic bag expanded by the difference in pressures inside and outside the
bag. The analogy of the electric capacity of a capacitor (C) is the compliance of the elastic bag wall.
When we include inertia in a hydraulic system, the force that accelerates fl uid fl ow is the pressure

gradient. According to Newton’s law, the acceleration of fl ow, i.e. the fi rst derivative of fl ow der(i),
is proportional to the pressure gradient (v) and inversely proportional to the weight of the selected
fl uid column, called inertance (L). In the electrical domain, inertance corresponds to coil inductance.

Each element from the hydraulic or electric domain has two interconnecting connectors through
which electric current or medium fl ow (p.i, n.i) fl ows in and out; as a rule, the running fl ow (i) never
disappears in the element (i.e. i=p.i=n.i). Simultaneously, voltage or pressure (p.v, n.v) is connected
to the connectors by interconnecting into a network, and a voltage gradient or a pressure gradient (v)

builds up in the element.

MEFANET 2009

19

It is interesting that the individual fundamental elements have the same formal expression (Fig.
22) in different domains (electrical, hydraulic or pneumatic). This is due to the general system properties
of the real world, where voltage or pressure correspond to generalized effort and electric current or
medium fl ow correspond to generalized fl ow, as the case may be.

To build the pulmonary mechanics model in Modelica, we will need to defi ne the equations of
three elementary classes, whose instances we will use in the model. To express the resistance of the
respiratory tract, we will use an instance of the Resistor class. The elastic respiratory tract, alveoli and
chest will be described as elastic bags using an instance of the Capacitor class and the air fl ow inertia
will be expressed using an instance of the Inductor class.

The fragment with an equation notation in the “Resistor” class, describing the relation between
variables expressing the resistance (R), pressure gradient (v) and fl ow (i) in Modelica, is simple,
according to Ohm’s law:

 equation

 R*i = v;

 end Resistor;
The “Capacitor” class is used to describe an elastic bag expanded by air fl ow at the input. The

compliance (C) characterizes the level of “expansibility” of the bag wall due to the pressure difference
(v) between the air pressure forcing air into the bag and the pressure outside the elastic bag. The fl ow
rate of air coming to the bag (i) is then described by the following equation in the Modelica language
(where “der” means derivative):

equation

 i = C*der(v);

end Capacitor;
The inertial element will be implemented in the model by means of the “Inductor” class. The

force that accelerates air fl ow is the pressure gradient. According to Newton’s law, the acceleration of
fl ow, i.e. the fi rst derivative of fl ow der(i), is proportional to the pressure gradient (v) and inversely
proportional to the weight of the selected gas column, called inertance (L). We can thus describe the
relation between a change in the fl ow rate (i) and the pressure gradient (v) depending on inertance (L)
using a simple equation in the “Inductor” class:

equation

 L*der(i) = v;

end Inductor;
Instances of the above-mentioned fundamental elements are interconnected in a network by

means of connectors – two interconnecting connectors, labelled “p” and “n”, are defi ned for each of the
elements. Voltage, or pressure for the hydraulic or pneumatic domain, is fed to each of them (p.v, n. v)
when connected and an electric current or medium fl ow (p.i, n.i) can fl ow through the connectors.

Connectors are instances of special connector classes, in which the variables used for interconnection
are defi ned. Components can be interconnected by means of connectors that are instances of the same
connector classes (the “interconnection sockets” must be of the same type). In our case, connectors “p”
and “n” are instances of the “Pin” connector class, which is able to interconnect voltages or pressures
(p.v, n.v) and fl ows (p.i, n.i) with the environment. Values from the connectors are interconnected with
the values of the variables (i) and (v) inside the individual fundamental elements. As a rule, fl ow does
not disappear anywhere in any of the above-mentioned fundamental elements – what fl ows into an
element also fl ows from it (i=p.i=n.i), and the appropriate gradient is calculated from the difference in
voltages or pressures (v=p.v-n.v).

Implementing this requirement is simple – since Modelica is an object-oriented language, all
three of the above-mentioned classes of fundamental elements will have a common ancestor (OnePort)

MEFANET 2009

20

from which they will inherit connectors “p” and “n” as well as the following equations:

equation

 v= p.v-n.v;

 0= p.i-n.i;

 i= p.i;

end OnePort;

The equations will thus connect the values of the pressures or voltages fed from the environment
to connectors “p” and “n” (p.v, n.v) with the pressure or voltage gradient (v) and express the same value
of (electric or hydraulic) fl ow at both connectors (p.i, n.i) and inside the component (i).

Connector classes defi ne the manner in which Modelica components communicate with one
another. Figuratively speaking, by defi ning connector classes we defi ne the types of “sockets”. In
connectors we defi ne individual variables that the connector will use to interconnect a component with
its environment.

It is defi ned for each variable in a connector whether it represents a fl ow (then the variable is
identifi ed with a “fl ow” attribute) or not (“non-fl ow” variables). This differentiation is important for the
correct interpretation of the interconnection of individual components (instances of element classes)
through the appropriate connectors (see Fig. 23). For fl ow variables, it is obvious that we must make
sure the entity in question (whose fl ow the variable characterizes) neither disappears nor accumulates
anywhere in the interconnection. Therefore, the sum of all interconnected variables with the “fl ow”
attribute must be zero (as according to Kirchhoff’s law in the electrical domain). For non-fl ow variables,
an interconnection defi nes that their values must be the same for all interconnected connectors (according
to Kirchhoff’s fi rst law). By interconnecting the instances of individual fundamental elements through
connectors, we express the requirement of the zero algebraic sum of the values of interconnected fl ow
variables and the requirement of the equality of the values of interconnected non-fl ow variables.

Each Modelica class can
have a graphical representation
– this is important especially for
depicting the interconnection of
instances where components are
interconnected to create a clear
graphical structure of a model. That
is why we can also defi ne an icon
for each class in Modelica. The
icon can be animated.

We can then create a model
graphically in Modelica, by
interconnecting the instances of
individual elements that we select
from a library with the mouse and
setting the values of the appropriate
parameters in a dialogue box.

For the implementation of
our pulmonary ventilation model,
we need to interconnect instances
of the “Resistor”, “Capacitor” and
“Inductor” elements.

i1

i3

i1+i2+i3=0

v1=v2=v3 v2

v3

i2

v1

i

i

Figure 23: Interconnection of Modelica components by means of
acausal connectors. The values of fl ow-type connector variables
(here the variable i) will be set so that the algebraic sum of the
values of all interconnected fl ows is zero. The values of other

(non-fl ow) variables (here the value of v) will be set to the same
value at all interconnected connectors.

MEFANET 2009

21

However, we do not have to program the fundamental elements we need from the very beginning
– Modelica includes extensive libraries from various physical domains (electric, hydraulic, mechanic,
etc.) where such elements can be found.

In our specifi c case, we can take advantage of e.g. the visual components of electrical circuits for a
quick solution – we will create the individual instances (RC, RP, CL, CW and CS), enter the appropriate
values of parameters (C and R) and interconnect the components with a connector.

The result is shown in Fig. 24. Comparing the model structure implemented in Modelica with the
original schematic drawing showing the model structure (Fig. 17), we can see that the Modelica solution
is straightforward and (unlike the Simulink implementation – see Figs. 18 and 19) the structure of the
model corresponds to the structure of the modelled reality.

Increasing the complexity of the model by including an inertial element does not cause any
signifi cant trouble – we just pick up the appropriate inertial component (LC) from the library with the
mouse, set the value of its parameter (L) and interconnect it in the model. The structure of the model
implemented in Modelica, shown in Fig. 25, corresponds to the structure of the modelled reality (see
Fig. 20), while the structure of the Simulink implementation (Fig. 19) corresponds more to the method
of solution for the model’s equations.

The fundamental elements of the simulated reality can have very trivial notation of relations
between the variables in question. A resistor, capacitor or coil from the electrical physical domain or
their hydraulic analogies are illustrative examples of this.

A complex system for calculation will ensue from interconnecting the fundamental elements in
networks – a system of equations will result from their mutual interconnections. Their numerical solution
in causal simulation tools may not be trivial at all – e.g. more complex R-C-L models of circulation or
respiration implemented in Simulink are very complex (see e.g. circulation models in our Simulink

Figure 24: The implementation of the pulmonary mechanics model (according to Fig. 17) in Modelica
resembles the modelled reality much more than the implementation in Simulink.

MEFANET 2009

22

library, Physiolibrary – http://www.physiome.cz/simchips).

In Modelica, we do not have to bother with the method of solution for equations. Instead, more
attention should be paid to the defi nition of equations in individual elements and interconnection of their
instances (individual components).

In Modelica, the acausal tool itself will take care of the algorithm for solving the resulting system
of equations and we can monitor the appropriate fl ows and pressures in various places in the simulated
circuit when the simulation is launched.

Causal and acausal connectors
The acausal connector interconnection of components is implemented by means of two types of

variables: one representing a fl ow – for this, it holds true that the sum of fl ow values in all connected
nodes is zero (because no medium accumulates in the area of branching into connected nodes); and one
whose value remains the same in all connected nodes. It is advisable that each variable with the fl ow
attribute is accompanied by a non-fl ow variable representing the generalized effort in relation to the fl ow
variable in the connector interconnection.

Unlike Simulink components (which have defi ned component inputs and component outputs), we
do not defi ne what is an input and what is an output in an acausal interconnection. An acausal Modelica
component does not calculate output values from input values. The interconnection of Modelica
components by means of acausal connectors interconnects the equations in individual components into
systems of equations.

In addition to acausal linking connectors, Modelica classes may include causal input connectors
that are used to feed actual input variables from the environment, as well as causal output connectors
that serve to send output variables to the environment.

Figure 25: In Modelica, implementing the pulmonary mechanics model taking into account the inertial
element (according to Fig. 20) merely requires adding the LC inertial component.

MEFANET 2009

23

In addition to equations, Modelica classes may also include a precisely defi ned algorithm for
the calculation of output values from input values (a typical example is the modelling of functional
dependencies).

Modelica components are thus interconnected using both acausal links and causal, directional
inputs and outputs.

Causal connectors usually distribute signals – e.g. in a blood circulation model, signal causal
inputs may contain signals used to set resistance values in components representing the resistance of the
circulatory system.

Consequently, a Modelica model is usually represented by a graphical set of components
interconnected using both acausal and causal links. Components are instances of Modelica classes
whose structure may also be represented as a network of interconnected instances.

An example of the defi nition and use of an acausal element – elastic compartment
Let us see a simple example of the defi nition and use of a Modelica class. When modelling the

dynamics of blood vessels, we often need an elastic (infl atable) compartment.

Therefore we will defi ne a class named VascularElasticBloodCompartment whose instances will
be elastic, acausally interconnectable compartments that can be connected to the “distribution” of a fl uid
through an acausal connector – the fl uid may fl ow to/from the compartment at a certain rate and under
a certain pressure. We can assign a graphic icon to each class representing a model or connector in the

programming environment. We
can create an icon for our elastic
compartment, too (Fig. 26).

This is not just a
school example – we take this
compartment into account in our
Modelica implementation of an
extensive model of physiological
functions, “Quantitative
Human Physiology” (Abram
2007, Coleman et al, 2008).
Fig. 28 shows an example
of the use of instances of the
elastic compartment in our
implementation of this extensive
model.

We can imagine the elastic
vascular compartment (Fig.
27) as an infl atable bag with
one acausal interconnecting
connector (let us name it e.g.
“ReferencePoint”) that we will
use to connect to the environment
– this connector will provide us
with two variables:

• fl ow “ReferencePoint.q”,

• pressure “ReferencePoint.
pressure”.

Figure 26: Modelica allows creating an icon for each created
class representing a model or a connector, which will be used

to interconnect instances of the class with other instances using
graphic tools. The result is a model structure consisting in

interconnected instances, very close to the modelled reality. Here
we have created an icon for the elastic compartment, having one
acausal connector (black diamond), three connectors for signal
inputs and two connectors for signal outputs. Each instance of

the elastic compartment will have this icon, displaying the actual
value of the initial volume (specifi ed as a parameter) instead of

“initialVol” and the name of the instance instead of “name”.

name

(initial initialVol ml)

V0

ExternalPressure

C
om

pliance

Acausal connector:
referencePoint

Causal input conectors:
V0, External Pressure, Compliance

Causal outut conectors:
Vol, Pressure
Causal outut conectors:
Vol, Pressure

Vol Pressure

MEFANET 2009

24

If the connector is connected to the environment through a connector, the pressure value will truly
be the same in all nodes connected to the compartment, and the fl ow will be distributed to all connected
nodes so that its algebraic sum will be zero (nothing ever accumulates in the area of branching) – see the
example of the component connection in Fig. 28.

Three signal (causal) inputs will enter the compartment from the outside:

• Basic charge “V0” – the value of the volume that must be reached before the pressure in
the elastic compartment starts increasing. If the volume is less than zero, the pressure in the
compartment will be zero.

• Outer, external pressure “ExternalPressure” – the pressure of the ambient environment on the
elastic compartment.

• “Compliance” of the elastic compartment – the pressure in the compartment will be inversely
proportional to it if the compartment volume exceeds the basic charge.

Two (causal) signal outputs will go from the compartment to its environment:

• Information about the compartment’s current volume, “Vol”

• Information about the pressure inside the compartment, “Pressure”

Va
sc

ul
ar

Pr
es

su
re

Vol

V0

<V0
<V0

StressedVolume = max(Vol-V0,0);
Pressure = (StressedVolume/Compliance) + ExternalPressure;

ExternalPressure

der(Vol) = q;

Pressure = referencePoint.pressure

V0V0V0

StressedVolume

V0V0V0

V0V0V0

V0V0V0

flow: q=referencePoint.q

Vol Pressure

ExternalPressure

Compliance

V0

name

(initial initialVol ml)

V0

ExternalPressure

C
om

pliance

Acausal connector:
referencePoint

StressedVolume

Figure 27: The concept of an elastic vascular compartment is based on the idea that when a blood
vessel fi lls with blood, the pressure in the vessel is determined only by the external pressure on the

vessel until a certain residual volume (V0) is achieved; the elastic and muscle fi bres in the blood vessel
will then start to tense and compress the volume of blood in the vessel with the VascularPressure

pressure. If we label the volume of fl uid in the blood vessel Vol, then the volume of blood stressing
the vessel (StressedVolume) will determine the Pressure inside the vessel depending on its Compliance
and on the external pressure on the vessel (ExternalPressure). The vascular compartment is connected

to the system by means of the ReferencePoint connector, through which blood may fl ow into the
compartment (at the rate of referencePoint.q) under pressure (referencePoint.pressure).

MEFANET 2009

25

It is useful to design another parameter for the compartment (whose value will be read before the
start of simulation), which would specify its initial charge:

Initial compartment volume, “initialVol”

We can also design an icon to display the elastic component in the programming environment.

The actual fragment of code describing the behaviour of the elastic compartment looks like this
in Modelica:

model VascularElacticBloodCompartment extends QHP.Library.Interfaces.BaseModel;

 Real StressedVolume (fi nal quantity=“Volume“, fi nal unit=“ml“);

 parameter Real initialVol(fi nal quantity=“Volume“, fi nal unit=“ml“)

 „initial compartment blood volume“;

 …

 initial equation

 Vol = initialVol;

 equation

 der(Vol) = referencePoint.q;

 StressedVolume = max(Vol-V0,0);

Input
V0

Input
V0

Input
V0

Input
ExternalPressure

Input
ExternalPressure

Input
ExternalPressure

Input
Compliance

Input
Compliance

Input
Compliance

Output
Pressure
Output
Pressure
Output
Pressure

Output
Vol

Output
Vol

Output
Vol

Acausal connector
ReferencePoint

Acausal connector
ReferencePoint

Acausal connector
ReferencePoint

Acausal
connector 1

Acausal
connector 1

Acausal
connector 1

Acausal
connector 2

Acausal
connector 2

Acausal
connector 2

Acausal
connector 3

Acausal
connector 3

Acausal
connector 3

Figure 28: The instance “splanchnicVeins” of the elastic compartment
“VascularElasticBloodCompartment”. The acausal connection with the appropriate connectors at

controllable resistors (labelled “connector1”, “connector2” and “connector3” here) will interconnect
the equations in the elastic compartment instance “splanchnicVeins” into a system of equations of all

the interconnected elements. The pressure value will be the same at all interconnected connectors:
splanchnicVeins.ReferencePoint.pressure = connector1.pressure = connector2.pressure = connector3.

pressure.
The algebraic sum of all fl ows at the interconnected connectors must be zero:

splanchnicVeins.ReferencePoint.q + connector1.q + connector2.q + connector3.q = 0.

MEFANET 2009

26

 Pressure = (StressedVolume/Compliance) + ExternalPressure;

 referencePoint.pressure = Pressure;

end VascularElacticBloodCompartment;

The fi rst line declares the model class; in addition, there is the declaration of a real variable,
“StressedVolume”, whose physical units will be checked. This is not just a question of code clarity and
readability. The check of unit compatibility will enable us to avoid a very hard-to-fi nd error, when we
exchange connectors in interconnections by mistake (if units are found to be incompatible, the check
will not allow us to create the wrong interconnection at all).

Then there is the declaration of an “InitialVol” parameter, whose physical units will be checked as
well. And then there is the equation section. The initialization of the compartment’s initial volume, i.e.
the variable “Vol”, is declared fi rst. The other lines in the equation section declare four equations. The
fi rst one is a differential equation – the derivative of the volume “der(Vol)” equals the infl ow “q” from
the connector “referencePoint”.

The next equation declares that the value of the elastically stressed volume “StressedVolume” will
be calculated as the difference between the compartment volume “Vol” and the value of its basic charge
“V0” (which is an input); the equation also says that the value of the compartment volume may never
drop down to negative values.

The third equation declares the relation between the “Pressure” in the compartment, the value of
the “StressedVolume”, the “Compliance” and the “ExternalPressure”. We would like to repeat that these
are not assignments but equations. The equation could also be written like this in Modelica:

Pressure - ExternalPressure= (StressedVolume/Compliance);

The last equation interconnects the value of “Pressure” in the compartment with the value of the
pressure interconnected with its environment by the acausal connector through the “referencePoint.
pressure”.

The value of “Pressure” is also a signal output from the compartment – as a signal, it can be
fed to other blocks – but it is a causal output (signal) variable and its value cannot be affected by what
we connect it to. However, the situation is different
with the interconnection from the acausal connector.
When we interconnect an instance of the elastic
compartment with other elements through the acausal
connector, the four equations in the compartment will
become part of the system of equations defi ned by
the interconnection and the values of the variables in
the elastic compartment instance will depend on the
solution of the originated system of equations.

Hybrid models
Continuous dynamics expressed by a system

of algebraic differential equations is often enough
for the mathematical description of real-world
models. However, we frequently need to represent
discontinuous, discrete behaviour (which is often
an approximation of quick continuous processes in
physical systems) and continuous dynamic systems
themselves are not enough for the description of
real-world processes – examples include the opening
and closing of valves in the hydraulic and pneumatic

y

z

time

y, z

event 1 event 2 event 3 event 4

Figure 29: An example of the behaviour
of real variables in hybrid systems. The

continuous time variable “y” changes in time
(its value does not have to be continuous –
e.g. it may change discontinuously, perhaps
in a jump, in response to an event). The real
discrete-time variable “z” only changes its

values at event instants.

MEFANET 2009

27

domain, the behaviour of diodes in the electrical domain or the switching on/off of genes, the creation
and transmission of nerve impulses or the opening and closing of ion channels in the biological domain.
Discrete event dynamic systems are frequent in the description of technical applications. Discrete
hierarchical state automata are a very powerful tool for the formalized description of processes and their
interactions (Harel, 1987).

When modelling large systems, it is often useful to combine discrete and continuous description
to a lesser or greater extent. Such “hybrid” models can combine discrete and continuous time variables,
and generate and react to various events (see Fig. 29).

Hybrid models are supported in modern development simulation environments. For example,
a continuous dynamic system model in Simulink can be combined with hierarchical state automata
created in a special modelling tool, Statefl ow – the values of variables in Simulink can change the states
of automata in Statefl ow, and Statefl ow can switch calculation blocks in Simulink by means of generated
events, changing the calculation procedure.

However, acausal development tools can directly change the used equations (not just the method
of solution). A small illustrative example can be the modelling of the average blood volume in a ventricle

SteadyStateVolume Volume
SteadyStateVolume

Volume

BloodFlow+ (VentricleSteadyStateVolume - Volume)*K;

-
BloodFlow

BloodFlow

-BloodFlow- (Volume-VentricleSteadyStateVolume)*K

q_in.q

q_out.q

q_in.q

q_out.q

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

SteadyStateVolume>=VolumeSteadyStateVolume>=VolumeSteadyStateVolume>=Volume

Causal inputs: VentricleSteadyStateVolume, BloodFlowCausal inputs: VentricleSteadyStateVolume, BloodFlowCausal inputs: VentricleSteadyStateVolume, BloodFlow

SteadyStateVolume<VolumeSteadyStateVolume<VolumeSteadyStateVolume<Volume

Figure 30: The Modelica acausal modelling tool allows changing the system of equations in use
dynamically. The illustration shows the hydraulic analogy of a ventricle volume model represented

as a continuous pump with variable internal volume. Two acausal connectors (q_in) and (q_out)
interconnect the component with its environment; the component receives the value of blood fl ow

(BloodFlow) and the required value of blood volume in the ventricle (VentricleSteadyStateVolume) as
its causal inputs. Equations calculate the volume of blood in the ventricle (Volume) and blood infl ow
and outfl ow values (q_in.q, q_out.q). The equations used will vary depending on whether or not the
required volume of blood is greater than the current volume of blood in the ventricle (i.e. whether

SteadyStateVolume >=Volume).

MEFANET 2009

28

(see Fig. 30).

A ventricle is modelled as a continuous pump with a variable internal volume.

The ventricle model is connected to the circulation by means of acausal connectors “q_in” and
“q_out”. These connectors interconnect the fl ow of blood into (“q_in”) and out of (“q_out”) the ventricle.
The change of blood volume in the ventricle will be determined by the algebraic sum of fl ows in both
acausal connectors. In Modelica, this will be written as follows:

der(Volume)=q_in.q+q_out.q;

The model has two causal inputs – one is the current fl ow in the ventricle (“BloodFlow”) and the
other is the required volume of blood in the ventricle in the steady state (“VentricleSteadyStateVolume”).
If that volume is greater than the current ventricle volume (“Volume”), then infl ow to the ventricle will
be set to a larger value than the outfl ow, proportionally to the difference between the required value and
the actual value:

q_in.q = BloodFlow + (VentricleSteadyStateVolume - Volume)*K;

Outfl ow from the ventricle (“q_out.q”) will be set to the value of “BloodFlow” with a negative
sign, because it fl ows out of the compartment:

q_out.q=-BloodFlow;

Alternatively, when the required value of blood volume in the ventricle
(“VentricleSteadyStateVolume”) is less than the actual value (“Volume”), the infl ow of blood will be
set to “BloodFlow” and the outfl ow of blood will be set to a larger value than the infl ow, proportionally
to the difference between the actual value and the required value. The equation notation fragment in
Modelica then looks like this:

model VentricleVolumeAndPumping;

….

equation

der(Volume)=q_in.q+q_out.q

if (SteadyStateVolume >=Volume) then

 q_in.q=BloodFlow+(VentricleSteadyStateVolume - Volume)*K;

 q_out.q=-BloodFlow;

else

 q_in.q=BloodFlow;

 q_out.q=

 (BloodFlow+(VolumeVentricleSteadyStateVolume)*K);

end if;

end VentricleVolumeAndPumping;

Two equations are then switched over in the model’s system of equations, depending on the values
of the variables “Volume” and “VentricleSteadyStateVolume”. At fi rst sight, the notation looks like an
assignment (as in standard programming languages) but they are equations. An equivalent notation may
look like this:

model VentricleVolumeAndPumping;

MEFANET 2009

29

….

equation

delta = (VentricleSteadyStateVolume - Volume)*K;

 der(Volume) = delta;

 q_in.q + q_out.q = delta;

if (delta<0) then

 q_in.q=BloodFlow;

else

 q_in.q=BloodFlow+delta;

end if;

end VentricleVolumeAndPumping;

Because they are equations, their order does not matter; nor does it matter whether the value of
the variable “delta” in the third equation is on the right or on the left.

The actual notation of the equations used in Modelica is even more compact:

model VentricleVolumeAndPumping;

….

equation

 delta = (VentricleSteadyStateVolume - Volume)*K;

 der(Volume) = delta;

 q_in.q + q_out.q = delta;

 q_in.q = if (delta<0) then BloodFlow else BloodFlow+delta;

end VentricleVolumeAndPumping;

Modelica allows describing discrete and continuous systems acausally, providing many
possibilities of combining models with discrete and continuous parts. Details can be found in Fritzon,
2003.

Combining acausal and causal (signal) connections in hierarchically arranged
models

Modelica makes modelling large systems easier and more controllable and supports their
hierarchical decomposition.

Modelica’s object-oriented architecture supports the structuring of models into suitable parts
having a coherent meaning so that they can be examined separately under certain conditions or re-used
(whether in a different place in the same model or in another model), greatly enhancing the clarity of
the created models. That is why we create large, reusable libraries of Modelica “simulation chips” in
Modelica and each model is usually accompanied by an extensive, hierarchically arranged library of
elements. Hierarchical components can be clicked to expand, which will reveal their internal structure.

An example of the hierarchical structure of a Modelica program is the “VascularCompartments”
class (see Fig. 31), which implements a part of the blood circulation subsystem and makes use of an
instance of the above-mentioned class “VascularElasticBloodCompartment”. Blood fl ows through
acausal connectors between elastic compartment instances, resistances of individual parts of the vascular

MEFANET 2009

30

system and two pumps modelling the activity of the right and left ventricles. The component also uses
causal signal connections. An entire set of signal connections (coming from outside the component) is
distributed e.g. by the “OrganBloodFlowSignals” bus. Input signal connections control the value of the
peripheral resistors and the pumping functions of the right and left ventricles. The structure of the model
represents the structure of the modelled reality much better and much more clearly than models created in
causal modelling environments. Just compare the Modelica model in Fig. 31 to the model shown in Fig.
6, implemented in Simulink. The two models represent roughly the same – the fl ow through an elastic
vascular system and a heart pump (however, the Modelica model has more details). The Simulink model
represents the calculation procedure rather than the structure of the modelled system. The advantage
of acausal modelling tools is particularly evident in more complex models, where the possibility of
hierarchical model decomposition is crucial for success, as it is important for the interconnection of
components to always express in an aggregated manner the cardinal relations at a given hierarchical
level while details can be obtained by digging deeper into the structure of individual components, which
will reveal the aggregated structure of the modelled reality at a lower hierarchical level.

Figure 31: An example of a part of the blood circulation subsystem – an instance of the
“VascularCompartments” class in Modelica (a part of the Modelica implementation of the large

Quantitative Human Physiology model). The model combines acausal and causal (control, signal)
connections. In this case, the interconnection by means of acausal connections models the distribution

of blood fl ows and pressures among the individual interconnected components. The model is
organized hierarchically; individual blocks can be clicked to expand and represent instances of classes
in which equations are specifi ed. The Modelica network thus represents the structure of the modelled
system much better than networks in causal modelling tools, which rather represent the calculation

procedure.

Controllable
resistances

Controllable
resistances

Controllable
resistances

Control signals bus
”organBloodFlowSignals

”

Control signals bus
”organBloodFlowSignals

”

Control signals bus
”organBloodFlowSignals

”

Controlled
pump
(right

ventricle)

Controlled
pump
(right

ventricle)

Controlled
pump
(right

ventricle)

Blood flow in
vessels

(with flow and
pressure)

Blood flow in
vessels

(with flow and
pressure)

Blood flow in
vessels

(with flow and
pressure)

Vascular elastic
compartments
Vascular elastic
compartments
Vascular elastic
compartments

MEFANET 2009

31

For instance, the component representing the pump of the right ventricle is connected to the
elastic compartment of the right atrium and the elastic compartment of the pulmonary arteries by means

of two causal connectors (distributing the blood fl ow and blood pressure). Causal signal control inputs
are connected to it from the “organBloodFlowSignals” bus. The “inside” of the component is shown in
Fig. 32.

The heart is a pulsation pump that fi rst draws blood from the atria into the ventricles during
“diastole” – at the end of diastole, the volume of blood in the ventricle equals the end-diastolic volume
(EDV). After the end of diastole, the valves between the atrium and the ventricle close and the ventricle
starts contracting during “systole”. The appropriate valves open and the right ventricle starts pumping
blood out to the pulmonary artery (the left ventricle to the aorta). At the end of systole, the valves
between the ventricle and the pulmonary artery in the right ventricle (and between the ventricle and the
aorta in the left ventricle) close – the volume of blood in the ventricle at the end of systole is called end-
systolic volume (ESV). The ventricle muscles relax, the pressure gradient between the atrium and the
ventricle opens the atrioventricular valves and diastole begins again.

In the ventricle model, the end-diastolic volume (EDV) is calculated in a “diastole” component
and the end-systolic volume in a “systole” component. Modelica allows not only designing of the graphic
form of icons representing the individual components but also animating the icons (to improve clarity).
In the given example, both components have animated curves during simulation, which represent the
relation between pressure in the ventricle and the values of ESV and EDV. A dot on the curves represents
the current value of EDV/ESV. Blood pressure in the ventricle is derived from the value of the supply
pressure in the atrium (this gets to the component from “q_in” by means of an acausal connector)
and the value of the external pressure in the pericardium – this gets to the ventricle from the signal

Figure 32: The “inside” of an instance of the right ventricle pump (component “rightVentricle”) from
Fig. 30. The ventricle is modelled as a continuous pump with variable internal volume.

MEFANET 2009

32

bus “BloodFlowSignals” by means of a causal connector, “Pericardium_Pressure”. In the “systole”
component, blood pressure in the right atrium at the end of systole is derived from the value of the
counter-pressure in the pulmonary artery (or pressure in the aorta in the left ventricle) – by means of
an acausal connector, “q_out”, and the value of the external pressure in the pericardium (by means of
the causal connector “Pericardium_Pressure”). During systole, the dependency of the ESV value on the
end-systolic pressure is also affected by the stimulation (or blocking) of “beta receptors”, which results
in changes in the contractile power of the heart muscle. A detailed description of equations that describe
this dependency is contained in “BetaReceptorsActivityFactor”, a component whose output is the causal
input for the “systole” component.

The ventricle model in Fig. 32 is not expressed as a pulsation pump but rather as a continuous
pump with variable internal volume. We do not model pumping “beat by beat” but by the average
cardiac output per minute.

The systolic volume is calculated fi rst (in the component “StrokeVolume”), as the difference
between the end-diastolic (EDV) and end-systolic (ESV) volumes. The value of the blood fl ow per minute
is calculated (in the “BloodFlow” multiplier) from the systolic volume multiplied by the heart rate. The
value of the heart rate (“HeartVentricleRate”) comes from the outside, from the “bloodFlowSignals”
bus.

Figure 33: A ventricle model with valves, which generates a pulsating blood fl ow beat by beat. It has
the same outer interface for interconnecting into the model of a higher hierarchical level as the pump

model.

MEFANET 2009

33

The average volume of blood in the ventricle is estimated as the arithmetic mean (“Vol_
SteadyState”) of the maximum heart charge in diastole (EDV) and heart volume at the end of systole
(ESV).

The ventricle is represented (by the “ventricle” component) as a continuous pump that has variable
internal volume (the component is an instance of the model from Fig. 30). The pump is connected to
the blood circulation by means of acausal connectors (“q_in” and “q_out”). It receives the calculated
value of the cardiac output (Blood_infl ow) and the required average value of the pump’s internal volume
(“Volume_SteadyState”) by means of two causal connectors.

The model of the heart approximated as a continuous pump is suffi cient (and suffi ciently quick)
for a number of applications in medical simulators. However, if we wish to model e.g. various valve
defects, we have to use a more detailed model, describing the behaviour of the ventricle beat by beat.

Replacing a simpler component with a more complex component does not have to mean reworking
the entire model. Model notation in Modelica allows a very elegant exchange of components as different
variants of classes with the same interface.

For example, it is possible to exchange the instances of the left and right ventricle models
(“rightVentricle” and “leftVentricle” components) inside the blood circulation subsystem model (see
Fig. 31): Instead of the continuous pump model of the ventricles (Fig. 32), we can insert instances of
a more complex model into the diagram, generating blood fl ow beat by beat. We just have to cast the

organBloodFlo...

V l C t t
bone

brain

f t
organBloodFlow Signals

organBloodFlow Signals

organBloodFlow SignalsVascularCompartments

fat

kidney

skin
organBloodFlow Signals

organBloodFlow Signals

organBloodFlo...

skeletal...

respirat

organBloodFlow Signals

organBloodFlow Signals

q_in q_out

34
ml

23
ml respirat...

leftHeart

rightHeart

organBloodFlow Signals

organBloodFlow Signals

Nephro...

TGFEff...

min....
____ml

A2Effe...

min....
____ml

Nephro...

AplhaR...

AplhaR...

Anesth...

Kidney_NephronCount_Total_xNormal

TGF_Vascular_signal
AlphaPool_Effect

AlphaBlocade_Effect
GangliaGeneral_NA

Kidney MyogenicDelay PressureChange

A2Pool_Log10Conc
AlphaPool_Effect

G li G l NA
AlphaBlocade_Effect

Kidney_NephronCount_Total_xNormal

Anesthesia_VascularConductance

otherTi...
organBloodFlow Signals

Myogen...

Affere... Effere... 600

Kidney_Acurate...
ml/min/...

Kidney_MyogenicDelay_PressureChange GangliaGeneral_NA

q_in q_out
peripheralkidney

Figure 34: Hierarchical arrangement of models in Modelica. The “VascularCompartments” component
(from Fig. 30) has one peripherally controlled resistor named “peripheral”. When clicked, it will

expand and show a number of controlled resistors connected in parallel. Clicking one of them – named
“kidney” – will display complexly controlled resistors in the kidneys. The combination of acausal

and (causal) signal connections and the wide range of graphical options for displaying the modelled
relations allow the creation of hierarchically structured and “self-documenting” models.

MEFANET 2009

34

instances of the left and right ventricles.

The basis of the ventricle model with valves that generates a pulsating blood fl ow beat by beat
(Fig. 33) is an elastic compartment (“ventricle”), which has a generated oscillating value of compliance
(unlike the elastic compartment used in the blood vessels). The frequency of the oscillations is determined
by the number of heartbeats per minute. The shape of a single compliance change period (the “curve”
component) expresses the properties of the heart muscle. The amplitude is affected by the stimulation
and blocking of the beta receptors. At last, the direction and rate of blood fl ow in the ventricle is derived
automatically from the properties of the valve components (“valve1” and “valve2” components) and
from the pressure gradients.

A simple valve model can be represented as an analogy of a series connection of an ideal diode
with a resistor. An alternative (more complex) model of the valves will allow the modelling of various
valve defects.

By exchanging components of different complexity with the same interface, we can create model
instances of different complexity as needed for their application use.

Modelica supports the possibility to exchange individual components by allowing defi ning
interfaces with a variable number of control (input, causal) signals. Depending on the number of control
signals, components may be more complex or, conversely, simplifi ed, and their function may be tested
when connected to a model of a higher hierarchical level. This major advantage can be used effi ciently
not only when debugging complex models but also when identifying a model from experimental data.

Making use of the hierarchy and component structure of models is very important in Modelica
(see Fig. 34). For the model construction architecture, it is advisable to follow the rule stating that the
structure of a component should always fi t in a single screen. A complex tangle of connections is not the
sign of a good design and calls for trouble.

The purpose of this chapter was not to describe the physiology of blood circulation. We just
wanted to use the rather detailed description of the structure of some components to illustrate how
acausal modelling tools allow the creation of richly hierarchically structured, easily modifi able, “self-
documenting” models.

When modelling extensive systems, such as the models of interconnected physiological regulations
as a basis for medical simulators, the acausal modelling environment of the Modelica language is a great
help.

From simulation model to educational simulator
For many years we have been using the environment Mathworks Matlab/Simulink as development

tool for building simulation kernel of educational simulators. Now, we use a very effi cient environment,
which utilizes the Modelica simulation language. By our experience, the simulation model development
in Modelica is much more effi cient.

Creation of the educational simulator is demanding programming work, linked to the results of
the simulation model development and to the created elements of interactive graphics.

In accordance with the designed scenario, graphic elements of the user interface must be “knitted”
together with the mathematical model programmed in the background. In order to make writing of the
simulators easier (and not to have to program an already debugged simulation model “manually” in
Visual Studio .NET), here, too, we have developed a special software tool to automatically generate the
simulation model from Simulink in the form of a component for the .NET environment.

To facilitate conversion of mathematical models from the Modelica language environment into
.NET, we are extending OpenModelica compiler (as part of the international project Open Modelica)
to C# simulation code generation (see Fig. 35). Besides interconnection with the model creation tools,

MEFANET 2009

35

easy connection to graphic components of the user interface under development is important, as well.
Flash components can be incorporated into the simulator in the process of creation through an Active
X component. The new .NET environment version also introduces entirely new possibilities of creating
graphic components. Thanks to the new WPF (Windows Presentation Foundation) technology, komplex
graphic components can be created directly in the .NET platform, which include animations, vector
graphics, 3D elements etc. (similarly as in Adobe Flash or even with potentially greater possibilities).
It is important that the graphic user interface under development is directly integrated with the .NET
platform, which removes the need of bridging the heterogeneous worlds of .NET and Adobe Flash in
the simulators development. Microsoft Expression Blend provides considerable support of cooperation
of artists and programmers thanks to the interface, which separates (and connects) the work of an artists
and programmer.

An artist can create komplex animations in this tool very comfortably (using a graphic user
interface), and the animations can be controlled easily. The programmer specifi es such control by
connecting to relevant program modules (the animations can be thus controlled by the simulation model
on the background similarly as puppets on strings).

Moreover, the new platform Microsoft Silverlight shall make it possible to develop simulators,
which can run directly in the Internet browser (even on computers with different operating systems – it
is only necessary to install the relevant plugin in the browser).

Figure 35: Making simulators in the .NET environment. The model is programmed as a component of
the .NET environment (the so called .NET assembly) – preferably by means of automatic generation

from models development tools (from the Matlab/Simulink or Modelica programming language
environment). Graphic components are created in Adobe Flash or Microsoft Expression Blend.

Creating animations in Expression Blend offers the advantage of creating both the animations as well
as the simulator in the common .NET platform.

MEFANET 2009

36

Conclusion
Almost four decades have passed since the publication of the extensive model of Guyton, Coleman

and Grander (1972), mentioned at the beginning of this chapter.

Current integrative models of interconnected physiological systems, created as a basis for
medical simulators, are much larger. One example is the current model of Guyton’s colleagues and
disciples – Quantitative Human Physiology, which can be downloaded from http://physiology.umc.
edu/ themodelingworkshop. The authors (Hester et al., 2008) have separated the implementation of
the simulator and the description of model equations to make the model structure obvious to the wider
scientifi c community. The model equations are described (in a very complex manner) using a special
XML-based language. However, the structure of the rather complicated model is rather hard to see from
the notation at fi rst sight. The description of the model is distributed over dozens of subfolders, each
of which contains fi les (often more than ten thousand). Consequently, the overall model structure and
individual relations are very unclear. That is why we have created a special software tool, QHPView,
providing a well-arranged view of the mathematical relations from the QHP XML notation (see Fig. 36).
However, the authors implemented the actual model by means of a custom, block-oriented solver. Since
there are a large number of relations in models of such complexity (leading to the solution of implicit
equations), block-oriented model implementation (where the outputs of one block are used as the inputs
for other blocks) is very complicated and refl ects the calculation algorithm rather than the structure of

VascularCompartments QHPView

Spla
nc

hn
icV

ein
s

Equations

Figure 36: Our QHPView tool will allow clarifying the structure of the Quantitative Human
Physiology (QHP) model, originally recorded in hundreds of XML fi les distributed over dozens

of folders in which equations and individual relations were hard to identify at fi rst sight. The
implementation (and subsequent modifi cation) of such a large model in a block-oriented environment
is diffi cult. Acausal modelling tools, which enable a declarative model notation using the notation of

the model’s equations, are a great help, in particular for such extensive models.

MEFANET 2009

37

the modelled relation. As the complexity of a model grows, its clarity decreases.

The use of modern simulation environments where the individual parts of a model can be described
directly as a system of equations rather than an algorithm for solving the equations is very useful,
especially for extensive models. The notation of models is declarative – we describe the structure and
mathematical relations, not the calculation algorithm (therefore we speak of acausal modelling).

An acausal description is much better in capturing the fundamentals of the modelled reality and
simulation models are much more readable and thus less prone to errors. Object-oriented architecture
allows building models with a hierarchical structure, using a large library of reusable elements.

Acausal modelling tools work with interconnected components that are instances of classes in
which equations are directly defi ned, and acausal interconnection defi nes systems of equations. By
contrast with causal modelling approaches, we do not have to bother about the method of solving such
equations. We leave it to the machines to fi nd an algorithm for solving them.

These advantages are demonstrated in practice by our implementation of the large QHP model,
which we implemented (modifi ed and expanded) in the acausal environment of the Modelica language.
Comparing the complex structure of the model from Fig. 35 with the examples of the implementation
in Modelica in the previous illustrations, we can see that the acausal implementation leads to a much
clearer model structure and makes model modifi cations and adjustments much easier.

Today’s acausal modelling tools are able to generate and numerically solve large systems of
equations, which allows the creation of diagrams of physical, chemical or biological processes directly
during the implementation of a model. Such diagrams then allow obtaining the results of simulations
directly with a mouse click.

New technologies bring about new possibilities and new challenges for the creation of simulation
models.

Acausal simulation environments and in particular Modelica, the new object-oriented simulation
language that will make modelling large and complex systems signifi cantly easier, are among them.

Acknowledgement
Work on the development of medical simulators is supported under the National Research

Programme, Project No. 2C06031, a development project of the Ministry of Education, C20/2009, and
by Creative Connections s.r.o.

References
[1] Abram, S.R., Hodnett, B.L., Summers, R.L., Coleman, T.G., Hester R.L.: Quantitative Circulatory

Physiology: An Integrative Mathematical Model of Human Physiology for medical education.
Advannced Physiology Education, 31 (2), 2007, 202 - 210.

[2] Amosov, N.M, Palec, B.L., Agapov, G.T., Ermakova, I.I, Ljabach, E.G., Packina, S.A., Soloviev,
V.P.(1977): Theoretical research of physiological systems (in Russian). Naukova Dumaka, Kiev,
1977.

[3] Bassingthwaighte J. B. Strategies for the Physiome Project. Annals of Biomedical Engeneering 28,
2000, 1043-1058.

[4] Coleman T.G, Hester, R., Summers, R. (2008): Quantitative Human Physiology [Online] http://
physiology.umc.edu/themodelingworkshop/

[5] Dabney J.B., Harman T.L. (2004) Mastering Simulink, Prentice Hall, Houston, 2004, ISBN: 0-13-
142477-7

[6] Grodins F.S., Buell J., Bart A.J. (1967): Mathematical analysis and digital simulation of the
respiratory control system. J.Appl. Physiol. 22 (2),260-276

[7] Guyton AC, Coleman TA, and Grander HJ. (1972): Circulation: Overall Regulation. Ann. Rev.
Physiol., 41, 13-41.

MEFANET 2009

38

[8] Guyton A.C, Jones C.E and Coleman T.A. Circulatory Physiology: Cardiac Output and Its
Regulation. Philadelphia: WB Saunders Company,1973.

[9] Fritzson P. (2003). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press.

[10] Hall J.E. (2004): The pioneering use of system analysis to study cardiac output regulation.
Am.J.Physiol.Regul.Integr.Comp.Physiol. 287:R1009-R10011,2004,287: s. 1009-1001.

[11] Harel, David (1987). Statecharts: a visual formalism for complex systems. In Science of
Computer Programming 8, 231-274.

[12] Hester L. R., Coleman T., Summers, R.: (2008) A multilevel open source model of human
physiology. Tea FASEB Journal, 22, 756

[13] Hunter P.J., Robins, P., Noble D. (2002) The IUPS Physiome Project. Pfl ugers Archive-European
Journal of Physiology, 445, 1–9

[14] Ikeda N, Marumo F and Shirsataka M. A Model of Overall Regulation of Body Fluids. Ann.
Biomed. Eng. 1979:7, 135-166

[15] Khoo M.C. (2000) Physiological Control Systems: Analysis, Simulation, and Estimation,.IEE
Press, New York 2000, ISBN 0-7808-3408-6

[16] Kofránek J. Anh Vu L. D., Snášelová H., Kerekeš R. and Velan T., 2001. GOLEM – Multimedia
simulator for medical education. In MEDINFO 2001, Proceedings of the 10th World Congress on
Medical Informatics. (London, UK, 2001), Patel, L., Rogers, R., Haux R. Eds. IOS Press, London,
1042-1046.

[17] Kofránek J., Andrlík M., Kripner T, and Mašek J.: From Simulation chips to biomedical
simulator. Amborski, K. and Meuth, H. 2002. Darmstadt, SCS Publishing House. Modelling and
Simulation 2002 Proc. of 16th European Simulation Multiconference, 431-436

[18] Kofránek, J, Rusz, J., Matoušek S., (2007): Guytons Diagram Brought to Life - from Graphic
Chart to Simulation Model for Teaching Physiology. In Technical Computing Prague 2007. Full
paper CD-ROM proceedings. (P. Byron Ed.), Humusoft s.r.o. & Institute of Chemical Technology,
Prague, ISBN 978-80-78-658-6, 1-13, 2007. Available at (including source code): http://www.
humusoft.cz/akce/matlab07/sbor07.htm#k

[19] Raymond, G. M., Butterworth E, Bassingthwaighte J. B.: JSIM: Free Software Package for
Teaching Physiological Modeling and Research. Experimental Biology 280, 2003, 102-107

[20] Van Vliet, B.N., Montani J.P. (2005):, Circulation and fl uid volume control. In: Integrative
Physiology in the Proteomica and Post Genomics Age. Humana Press, 2005, ISBN 918-1-58829-
315-2, s. 43-66

MEFANET 2009

39

