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Abstract

In past, simulation models had been created directly in the software development environment used for making 
the educational software itself. Recen  tly, specialized development tools rather than universal programming 
languages have been used for making and verifi cation of simulation models. Common choice is that of the block 
oriented environments (e.g. Simulink). In these environments, hierarchically connected blocks that process input 
information to output information are used and connected when creating a simulation model.  Signals fl ow in 
connections between individual blocks, transmitting the values of individual variables from the output of one block 
to the input of other. The s     tructure of the interconnected network preserves the algorithm of calculation, i.e. clarifi es 
how the values of particular variables are calculated step by step. The whole process is known as causal modelling. 
The limitation of the causal approach to modelling is that it refl ects more the calculation procedure than the actual 
structure of the modelled reality. The physical structure of the modelled world is captured only by the structure of 
calculation. Causal modelling is especially arduous for intricate, hierarchically organized models, for instance the 
models of complex physiological systems, which biomedical simulators are based on. At present, new simulation 
environments have become available. Fundamental innovation of these environments comprises of the possibility 
to describe individual parts of the model as a system of equations directly describing the behaviour of that part and 
not the algorithm of solving of these equations. Model description is declarative (the structure of mathematical 
relationships instead of algorithm of calculation is described) and notation is therefore acausal. Acausal modelling 
environments work with interconnected components (i.e. blocks) as well. A component represents an instance of 
class for which equations or parameters are defi ned. Components are linked through connectors that are defi ned 
more precisely then usual, as they themselves help to defi ne the system of equations. Thus, the connections between 
components do not defi ne the calculation procedure but rather the modelled reality. The exact algorithm and method 
of solving the equations is “left to the machines”. When large and complex systems are modelled in acausal 
simulation environments (e.g. based upon modelling language Modelica), the whole process can be facilitated so 
substantially, as to make it the breakthrough innovation in building the simulation kernel of biomedical educational 
software. Advantages of the acausal approach are demonstrated using Modelica implementation of a large-scale 
physiological system model “Quantitative Human Physiology” as an example.
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In place of an introduction – a web of physiological regulations
Thirty-six years ago the Annual Review of Physiology published an article (Gyuton et al. 1972) 

which at a glance was entirely different from the usual physiological articles of that time. It was introduced 
by a large diagram on an insertion. Full of lines and interconnected elements, the drawing vaguely 
resembled an electrical wiring diagram at fi rst sight (Fig. 1). However, instead of vacuum tubes or other 
electrical components, it showed interconnected computation blocks (multipliers, dividers, adders, 
integrators, functional blocks) that symbolized mathematical operations performed on physiological 
variables (Fig. 2). Bundles of connecting wires between the blocks indicated the complex feedback 
interconnection of physiological variables at fi rst glance. The blocks were arranged in eighteen groups 
that represented individual interconnected physiological subsystems. In the centre was a subsystem 
representing circulatory dynamics – linked through feedback links with other blocks: From the kidneys 
to tissue fl uids and electrolytes to autonomic nervous control and hormonal control including ADH, 
angiotensin and aldosterone (Fig. 3).



Figure 1: Guyton’s blood circulation regulation diagram from 1972.

Figure 2: Individual elements in the block diagram of Guyton’s model represent mathematical 
operations, the interconnection of elements represents equations in a graphically expressed 

mathematical model..
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Figure 3: Individual interconnected subsystems in Guyton’s model.
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In this entirely new manner, using graphically represented mathematical symbols, the authors 
described the physiological regulations of the circulatory system and its broader physiological relations 
and links with the other subsystems in the body – the kidneys, volumetric and electrolyte balance control, 
etc. Instead of an extensive set of mathematical equations, the article used a graphical representation 
of mathematical relations. This syntax allowed depicting relations between individual physiological 
variables graphically in the form of interconnected blocks representing mathematical operations. The 
whole diagram thus featured a formalized description of physiological relations in the circulatory system 
using a graphically represented mathematical model. 

The actual description of the model in the article was mostly represented by the elementary (but 
fully illustrative) drawing. Comments on and reasons for the formulation of the mathematical relations 
were very brief, e.g.: “Blocks 266 through 270 calculate the effect of cell pO2, autonomic stimulation, 
and basic rate of oxygen consumption by the tissues on the actual rate of oxygen consumption by 
the tissues”. This required exceptional concentration (and certain physiological and mathematical 
knowledge) from the reader to be able to understand the formalized relations between physiological 
variables.

A monograph (Guyton et al. 1973) published a year later, in 1973, explained a number of the 
adopted approaches in greater detail. 

We do not see a mathematical representation of reality very often in biology and medicine. It 
should be noted that the process of formalization, i.e. the translation of a purely verbal description of 
a given network of relations into the formalized language of mathematics, is delayed in biological and 
medical sciences in comparison with engineering sciences, physics or chemistry. While the process of 
formalization in physics started as early as the seventeenth century, in medical and biological sciences 
it has been relatively delayed due to the complicacy and complexity of biological systems and has only 
advanced with cybernetics and computer technology. The methodological tool here is computer models 
built on a mathematical description of biological reality. 

Formalized descriptions in physiology have been used since the late sixties (since the pioneering 
works of Grodins et al., 1967, describing respiration). Guyton’s model was the fi rst extensive mathematical 
description of the physiological functions of interconnected body subsystems and launched the fi eld of 
physiological research that is sometimes described as “integrative physiology” today. Just as theoretical 
physics tries to describe physical reality and explain the results of experimental research using formal 
means, “integrative physiology” strives to create a formalized description of the interconnection of 
physiological controls based on experimental results and explain their function in the development of 
various diseases. 

From this point of view, Guyton’s model was a milestone, trying to adopt a systematic view of 
physiological controls to capture the dynamics of relations between the regulation of the circulation, 
kidneys, the respiration and the volume and ionic composition of body fl uids by means of a graphically 
represented network.

 Guyton’s graphical notation of a formalized description of physiological relations provides a 
very clear representation of mathematical correlations – the blocks in network nodes represent graphical 
symbols for individual mathematical operations and the wires represent individual variables.  Guyton’s 
graphical notation was soon adopted by other authors – such as Ikeda et al. (1979) in Japan and Amosov 
et al. (1977) in the former USSR.  

However, the graphical notation of the mathematical model using a network of interconnected 
blocks was only visualization when created – Guyton’s model and later modifi cations (as well as the 
models of other authors that adopted Guyton’s representative notation) were originally implemented in 
Fortran and later in C++. 

Today’s situation is different.
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Today, there are specialized software simulation environments available for the development, 
debugging and verifi cation of simulation models, which allow creating a model in graphical form and 
then testing its behaviour.  One of these is the Matlab/Simulink development environment by Mathworks, 
which allows building a simulation model gradually from individual components – types of software 
simulation elements that are interconnected using a computer mouse to form simulation networks. 
Simulink blocks are very similar to the elements used by Guyton for the formalized representation of 
physiological relations. The only difference is in their graphical form (see Fig. 4).

This similarity inspired us to use Simulink to revive Guyton’s good, classic diagram and transform 
it into a working simulation model. When implementing the model in Simulink, we used switches that 
allow us to connect and disconnect individual subsystems and control loops while the model is running. 
We strove to keep the appearance of the Simulink model identical to the original graphic diagram – the 
arrangement, wire location, variable names and block numbers are the same. 

The simulation visualization of the old diagram was not without diffi culties – there are errors in 
the original graphic diagram of the model! It does not matter in the hand-drawn illustration but if we 
try to bring it to life in Simulink, the model as a whole collapses immediately. There weren’t too many 
errors – switched signs, a divider instead of a multiplier, mixed-up interconnections between blocks, 
a missing decimal point in a constant, etc. However, there were enough to prevent the model from 
working. Some of the errors could be seen at fi rst sight (even with no knowledge of physiology) – it 
is obvious from the diagram that the value of some variables in some integrators would quickly grow 
to infi nity in operation (because of incorrectly drawn feedback) and the model would collapse. With a 
knowledge of physiology and system analysis, however, all of the errors could be identifi ed with some 
work (Fig. 5). A detailed description of the errors and their corrections is in Kofránek et al. 2007).

Figure 6: The implementation of Guyton’s model in Simulink preserves the original arrangement of 
elements in Guyton’s graphic diagram.
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It is interesting that Guyton’s diagram as a complex drawing was reprinted many times in various 
publications (recently see e.g. Hall, 2004, Van Vliet and Montani, 2005). However, nobody mentioned 
the errors or made an effort to correct them. This was understandable at the time the diagram was created. 
Drawing software did not exist – the diagram was created as a complex drawing – and redrawing the 
complex diagram manually was not easy.  It is also possible that the authors of the model did not wish 
to correct the errors – those who went to the trouble of analyzing the model could spot the drawing’s 
“typos” and those who would just like to unthinkingly copy the diagram were out of luck. After all, the 
authors used to send out the source codes of Fortran programs for their model – so if anybody wished 
just to test the behaviour of the model, they did not have to program anything (at most, they had to 
routinely convert the program from Fortran to another programming language). 

Our Simulink implementation of Guyton’s (corrected) model (Figs. 6 and 7) is available for 
download at www.physiome.cz/guyton. Also available at that address is our Simulink implementation 
of a much more complex, later model from Guyton et al. There is also a very detailed description of all 
applied mathematical relations with an explanation. 

Block-oriented simulation networks
Guyton’s block diagram augured the rise of visual, block-oriented simulation languages. However, 

Guyton and his colleagues implemented the model in Fortran back in 1972 – Simulink version 1 was 
released eighteen years later (in 1990). Block-oriented simulation languages, of which Simulink is a 
typical example, allow assembling computer models from individual blocks with defi ned inputs and 
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outputs.  The blocks are grouped in libraries; when building a model, a computer mouse is used to create 
individual block instances, with inputs and outputs connected through wires that “conduct” information.

A Simulink network can be arranged hierarchically. Blocks can be grouped into subsystems 
that communicate with their ambient environment through defi ned input and output “pins”, making 
“simulation chips” of a sort. A simulation chip hides the simulation network structure from the user, 
much like an electronic chip hiding the interconnection of transistors and other electronic elements.  
Then the user can be concerned just with the behaviour of the chip and does not have to bother about 
the internal structure and calculation algorithm. The behaviour of a simulation chip can be tested by 
monitoring its outputs using virtual displays or virtual oscilloscopes connected to it. This is very useful 
especially for testing the behaviour of a model and expressing the mutual relations of variables. 

The entire complex model can be then visualized as interconnected simulation chips and the 
structure of their interconnection clearly shows what effects are taken into account in the model, and 
how (Figs. 8–11). 

This is very useful for interdisciplinary collaboration – especially in borderline fi elds such as 
biomedical system modelling  (Kofránek et al., 2002). An experimental physiologist does not have to 
examine the details of mathematical relations hidden “inside” a simulation chip; however, from the 

Figure 8: An example of a simulation chip 
(here representing the simulation model 

that is the basis for the GOLEM simulator 
(Kofránek et al., 2001). Its behaviour can be 

tested easily in the Simulink environment 
– input values (or value patterns) can be 
fed to the “input pins” and outputs or the 

time behaviour of outputs can be read 
out from the “output pins” by means of 

virtual displays or oscilloscopes. The next 
illustration shows the inside of this chip.

Figure 9: The “inside” of the simulation chip from 
the previous illustration. The structure resembles 

an electric network with interconnected integrated 
circuits, which represent simulation chips of a lower 

hierarchical level here. The next illustration shows the 
contents of the “Blood Acid Base Balance” chip.
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mutual interconnection of simulation chips they will understand the model structure and will be able to 
check its behaviour in the appropriate simulation visualization environment.

Simulation chips can be stored in libraries and users can create their instances for use in their 
models (Fig. 12). For example, we created a Physiolibrary for modelling physiological regulations 
(http://www.physiome.cz/simchips).

Hierarchical, block-oriented simulation tools are thus used advantageously in the description of 
the complex regulation systems that we have in physiology. A formalized description of physiological 
systems is the subject matter of PHYSIOME, an international project that is a successor to the GENOME 
project. The output of the GENOME project was a detailed description of the human genome; the goal 
of the PHYSIOME project is a formalized description of physiological functions. It uses computer 
models as its methodological tool (Bassingthwaighte, 2000; Hunter et al., 2002).

Several block-oriented simulation tools developed under the PHYSIOME project have been used 
as a reference database for a formalized description of the structure of complex physiological models. 
These include JSIM (http://www.physiome.org/model/doku.php) and CEllML (http://www.cellml.org/). 
Prof. Guyton’s disciples and followers have expanded the original, extensive simulator of the circulatory 
system (Quantitative Circulatory Physiology (Abram et al. 2007) with an integrated connection of all 
important physiological systems. The latest result is the Quantitative Human Physiology simulator (Hester 
et al. 2008), now also distributed as “Digital Human”, which represents today’s most comprehensive 

Figure 10: Simulation chips are arranged hierarchically. The illustration shows the “inside” of 
one of the simulation chips from Fig. 9.  Since each simulation chip includes suffi ciently detailed 

documentation of its inputs and outputs, the structure of relations inside a simulation chip 
(representing the physiological relations in a real organism) can be understood by physiologists. The 

next illustration shows the contents of the “BEINV” chip.

MEFANET 2009

9



and largest model of physiological functions. The model can be downloaded from http://physiology.
umc.edu/themodelingworkshop/. The authors developed a special block-oriented simulation system to 
represent the complex model structure. 

Causal and acausal approaches
Block-oriented tools work with hierarchically interconnected blocks. The connections between 

blocks “conduct” signals that transmit the values of individual variables from the output of a block to 
the inputs of other blocks. The blocks process input information into output information. 

The hierarchically arranged block-oriented description clearly shows how the values of individual 
variables are calculated in the model – i.e. what the calculation algorithm is.  

Figure 12: Simulation chips can be gathered in 
hierarchically arranged libraries in Simulink. It 
is then possible to use the mouse to “pick up” 

individual chips from the libraries (as from a tool 
palette), place them into the created application, 

interconnect them and create more complex models.Figure 11: Structure of the BEINV simulation 
chip. Simulation chips at the lowest hierarchical 

level consist in interconnected elementary 
components of the Simulink development 
systems (adders, multipliers, integrators, 

etc.) and possibly simulation chips of further 
lower levels. These interconnected elements 
represent individual mathematical relations. 

Usually, each chip is dynamically linked with 
the appropriate documentation page including 

a factual description of the chip’s function, 
including a description of the mathematical 

relations that constitute its basis.

Figure 13 The “Glomerular Filtration” simulation 
chip calculates the glomerular fi ltration rate. The 
structure of calculation is hidden from the user. 

However, there must be no algebraic loops inside a 
chip. 

R AP

Af f C

TubC

R BF

R PF

APr

GKf

GFR

G L O M  E R U L A R   F I L  T  R A T  I O N 

INPUT S :
RAP - Renal  artery pressure[torr]
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RBF - Renal  b lood flow [m l /m in]
RPF - Renal  p lasm a flow
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Calculation of glomerulal filtration rate
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However, the interconnection of blocks in a network of relations cannot be completely arbitrary. 
Interconnected elements may not include any algebraic loops – i.e. cyclic structures where an input 
value fed to the input of a calculation block depends (through several intermediate blocks) on the block’s 
output value in the same time step.

For illustration, let us consider the small example of an algebraic loop in Simulink, a block-

RPF - Renal plasma flow [ml/min]

GKf - Glomerular filtration coeffitient [ml/min/torr]

GFR - Glomerular filtration rate [ml/min]

AVeCOP - Average colloid osmotic pressure [torr]

ECOP - Efferent colloid osmotic pressure [torr]

APr - Afferent protein concentration [g/ml]

EPr - Efferent protein concentration [g/ml]

GFR - Glomerular filtration rate [ml/min]

PTP - Proximal tubule pressure [torr]
TubC - Tubule conductance [ml/min/torr]

FF - Filtration fraction [relative number]

AffC - Afferent artery conductance [ml/min/torr]

RBF - Renal blood flow [ml/min]

ACOP - Afferent colloid osmotic pressure [torr]

GFR - Glomerular filtration rate [ml/min]

RAP - Renal artery pressure [torr]

GKf - Glomerular filtration coeffitient [ml/min/torr]

NETP  - Net pressure gradient in glomerulus [torr]

PAff - Afferent artery pressure [torr]

GP - Glomerulal pressure [torr]

simulation chip:   G L O M E R U L A R   F I L T R A T I O N
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Figure 14: The interconnection of individual blocks inside the “Glomerular Filtration” simulation chip 
graphically represents individual mathematical relations for the calculation of the glomerular fi ltration 

rate. However, there is an algebraic loop. It is necessary to break the loop. 

Figure 15: Breaking the algebraic loop in the calculation of the glomerular fi ltration rate.  The 
interconnection of Simulink blocks refl ects the calculation procedure rather than a graphical 

representation of mathematical relations.
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oriented language.

A model of the kidneys uses a simulation chip calculating the glomerular fi ltration rate. The 
individual inputs and outputs of that chip are shown in Fig. 13. The inside of the simulation chip consists 
in elementary blocks performing mathematical operations. The value of GFR, a variable representing 
the glomerular fi ltration rate, is calculated from the value of NETP; to calculate NETP it is necessary 
to know the value of PTP, which is however calculated as the quotient of GFR and TUBC (Fig. 14).  
Our Simulink diagram contains an algebraic loop that must be broken. Therefore we solve an implicit 
equation in the blocks identifi ed as “Algebraic Constraint” in Fig. 15 to calculate GFR in each integration 
step.

Therefore, a Simulink network does not constitute the graphical representation of mathematical 
relations in a model; rather, it is the graphical representation of a chain of transformations from input 
values to output values through Simulink elements where loops are not allowed. 

If we focus on the representation of a structure of mathematical relations rather than the algorithm 
of calculations when building a model in Simulink, we can easily introduce algebraic loops into the 
model (however, the compiler will warn us about this). There are methods that can be used to get rid of 
algebraic loops (e.g. see Dabney  and Harman , 2004) – however, they lead to transformations that make 
the model structure even more complex and the model more diffi cult to understand. The need to have a 
fi xed direction of connection from inputs to outputs with no algebraic loops also makes model building 
more diffi cult.

The interconnection of blocks in Simulink thus refl ects the calculation procedure rather than the 
actual structure of the modelled reality. We call this causal modelling.

In complex systems, the physical reality of the modelled system becomes somewhat lost under 

ee

R

e=Rf

pp qq

L

p=Lf

C
q=Ce

f

de
dt

d

dq
/dt

df
dt

dp
/dt

f=e/R

f=p/L

e=q/C

• e means generalized effort – corresponding to 
force in mechanics, voltage in electrical diagrams, 
pressure in hydraulics, etc.

• f is generalized fl ow – corresponding to velocity in 
mechanics, current in electrical diagrams, fl ow rate 
in hydraulics, temperature fl ow in thermodynamics, 
etc. 

• q is generalized accumulation or defl ection, 
representing the integral of the generalized fl ow. 
It corresponds e.g. to the stretching of a spring 
in mechanics, fl uid volume in hydraulics, charge 
in electrical diagrams, accumulated heat in 
thermodynamics, etc. 

• p is generalized momentum (inertance) – the 
integral of the generalized effort, representing 
kinetic energy; in hydraulics it represents the 
change of the fl ow rate proportional to the pressure 
difference (fl ow momentum), in electrical circuits it 
is the potential needed to change an electric current 
(induction), etc.

• R, C and L represent constants of proportionality 
between the generalized system properties. They 
correspond e.g. to resistance, capacitance or weight.

Generalized system properties:

Figure 16: Relations between generalized system properties.
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the structure of calculation with this approach. 

New, “acausal” tools have recently been developed for the creation of simulation models. The 
major innovation brought about by acausal modelling tools is the possibility to describe the individual 
parts of a model directly as a system of equations rather than an algorithm for solving the equations. 
The notation of models is declarative (we describe the structure and mathematical relations, not the 
calculation algorithm) – thus the notation is acausal. 

Acausal modelling tools work with interconnected components that are instances of classes in 
which equations are directly defi ned. 

The components (i.e. instances of classes with equations) can be interconnected by means of 
precisely defi ned interfaces – connectors; this defi nes a system of equations. 

The latest version of Simulink provides certain options for using acausal tools as well. Mathworks, 
the producer of the Matlab/Simulink simulation tools, responded to the new trends by creating a 
special acausal Simulink library – Simscape – and related domain libraries such as SimElectronics, 
SimHydraulics, SimMechanics, etc. 

A modern simulation language that is built directly on the acausal notation of models is Modelica 
(Fritzson, 2003). It was originally developed in Sweden and is now available both in an open-source 
version (developed under the auspices of Modelica Association, http://www.modelica.org/) and in two 
commercial implementations. 

The fi rst commercial implementation is made by Dynasim AB – which has been bought by 
Dassault Systemes, a multinational corporation (sold under the name of Dymola, currently in version 
7.1), and the other commercial implementation is made by MathCore (sold under the name of 
MathModelica). Dynasim’s Modelica has a good connection to the Matlab and Simulink simulation 
tools, while MathModelica can connect to the Mathematica environment made by WoModelica works 
with interconnected components that are instances of individual classes. Unlike the implementation 
of classes in other object-oriented languages (such as jw C# or Java), classes in Modelica have an 
additional special section in which equations are defi ned. 

The equations do not mean assignment (i.e. storing the result of the calculation of an assigned 
command in a variable) but rather the defi nition of relations between variables (as is common in 
mathematics and physics).  For example, the following notations of relations between variables 
expressing the resistance (R), fl ow (F) and pressure gradient (P) are equivalent:

F=P/R

P/R=F

P=R*F

R*F=P

R=P/F

P/F=R

Components (class instances) in Modelica can be interconnected by means of precisely defi ned 
interfaces – connectors. 

What is important is that the interconnection of components actually interconnects systems of 
equations in the individual components with one another. By interconnecting Modelica components, 
we do not defi ne the calculation procedure but rather the modelled reality. The method of solving the 
equations is then “left to the machines”.
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Generalized system properties
The representation of a model in an acausal simulation environment resembles the physical reality 

of the modelled world more than the standard interconnected block diagrams in causal modelling tools. 
This is associated with the generalized system properties of the real world (Fig. 16), where an important 
role is played by generalized effort (corresponding to force, pressure, voltage, etc. in the real world) and 
generalized fl ow (corresponding to current, fl ow rate, etc. in the real world). The integral of generalized 
fl ow is generalized accumulation or defl ection (in the real world, this can be e.g. an electrical charge 
but also the volume of a liquid or gas, stretching of a spring, accumulated heat, etc.). The integral of 
generalized effort is generalized momentum (this represents fl ow momentum in hydraulics, induction 
in electrical circuits, etc.). 

Also related to the generalized system properties is the fact that descriptions of models of 
biological or physiological processes often use electrical or hydraulic analogies for reasons of clarity. 

Let us illustrate the utilization of generalized system properties and the difference between 
modelling in block-oriented simulation tools and in Modelica with a physiological reality modelling 
example – a model of simple pulmonary ventilation mechanics.

Let us consider a simple pulmonary mechanics model that is schematically shown in Fig. 17. 
With a high level of simplifi cation, the lungs can be seen as three bags interconnected through two tubes. 
The lungs are connected to the fan of the artifi cial pulmonary ventilation equipment, which periodically 
drives air into the lungs with the pressure PAO. P0 is the pressure of the ambient atmosphere. Airfl ow Q 
runs through the upper respiratory tract that has the resistance RC. From the upper respiratory tract, air 
forces its way through the lower respiratory tract to the alveoli. The resistance of the lower respiratory 
tract is RP, the pressure in the central parts of the respiratory tract (at the boundary between the upper 
and lower respiratory tracts) is PAW, the pressure in the alveoli is PA. 

 Air expands the pulmonary alveoli, whose compliance is CL (as the total compliance of the 
lungs). The interpleural cavity is in between the lungs and the rib cage. The pressure in it is PPL. The 

Figure 17: A simple pulmonary mechanics model (hydraulic and electrical analogy).
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chest has to expand as well during artifi cial pulmonary ventilation when air is forced into the lungs – the 
chest compliance is CW. The small portion of air that does not reach the alveoli expands the respiratory 
tract instead – its compliance is CS.

Now we can set up our equations. According to Ohm’s law, it must be true that:

   

PAW PA RPQA
PAO PAW RC Q

 
            (1)

 The relation between the compliance, pressure gradient and volume (expressed as the integral of 
the fl ow rate) is expressed by these equations:

  
 

1

1

1

PA PPL QAdt
CL

PPL P0 QAdt
CW

PAW P0 Q QA dt
CS

 

 

  





       (2)

According to the generalized Kirchhoff’s law, the sum of all pressures (voltages) along a closed 
loop must be equal to zero, i.e. the following must hold true for the loop along the node PAW and along 
the node PA0:

  ( ) ( ) ( ) ( ) 0PAW PA PA PPL PPL P0 P0 PAW         

  0)()0()(  PAOPOPPAWPAWPAO     (3)

Substituting from the equations for Ohm’s law and compliances, we get:

             

   

1 1 1 ( ) 0

1 ( ) ( ) 0

RPQA QAdt Q QA dt
CL CW CS

Q RC Q QA dt P0 PAO
CS

         

     

 


  

(4)

Causal approach – implementation of the pulmonary ventilation mechanics model 
in Simulink

When building a model in Simulink, we have to defi ne precisely the procedure of calculation 
from input variables to output variables. If we wish to calculate the reaction of the air fl ow to/from the 
lungs (Q) to the input – i.e. to the changes in pressure at the beginning of the respiratory tract (PAO) 
caused by the artifi cial pulmonary ventilation apparatus – the Simulink model will look like Fig. 18. 

We can also simplify the Simulink model. First we obtain a differential equation (input variable 
PAO, output Q) from equationс (4):

    

2 2

2 2

1 1 1 1 1d PAO dPAO d Q RC dQRC Q
dt RP CT dt dt CS RPCT dt RPCS CL CW

           
     (5)

When we enter the numeric parameters of resistance (in units cm H2O/L/sec) and compliance (in 
units L/cmH2O) (Khoo, 2000):
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 1; 0,5; 0, 2; 0, 2; 0,005RC RP CL CW CS        
(6) 

the equation (5) simplifi es:

 

2 2

2 2420 620 4000d PAO dPAO d Q dQ Q
dt dt dt dt

   
     (7)

In the Laplace transform of the equation (7), we get:

 

2

2

( ) 420
( ) 620 4000

Q s s s
PAO s s s




         (8)

This allows simplifying the Simulink model (Fig. 19):

However, when the values of the parameters change, the transform function (6) must be 
recalculated and the Simulink model will change. 

Now we will make the model a little more complex by taking air inertia in the upper respiratory 
tract into account (Fig. 20).

In addition, we will now take into account the inertial element LC=0.01 cm H2O s2 L-1:
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Figure 18: Simulink model implementation according to the equations (4). 
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PLC dQ
dt




          (9)

where ∆P is the pressure gradient and dQ/dt is the fl ow acceleration, or:

 

dQP LC
dt

 
          (10)

Figure 19 Simulink model implementation using the Laplace transform according to the equation (7).
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Figure 20: A simple pulmonary mechanics model taking inertia into account (hydraulic and electrical 
analogy).
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Then we get this instead of the system of equations (4):

  

 

 
2

2

1 1 1 0

1 0

dQARP QA Q QA
dt CL CW CS

dQ d Q dP0 dPAORC LC Q QA
dt dt CS dt dt

         

            (11)

Instead of the equation (7), we get:

 
Q

dt
dQ

dt
Qd

dt
Qd

dt
dPAO

dt
PAOd 40006202,501,0420 2

2

3

3

2

2

  (12)

and in the Laplace transform, we get:

  
40006202,501,0

420
)(

)(
23

2

sss
ss

sPAO
sQ

     (10)

This Simulink model will change (Fig. 21):

Since we always have to take into account the direction of the calculation in Simulink, the actual 
Simulink diagram is rather dissimilar to the physical reality of the described system. Even a small 
change in the model, such as the inclusion of the inertial element, requires careful calculation and a 
change in the model structure. The model will change signifi cantly even if we consider spontaneous 
breathing instead of artifi cial pulmonary ventilation. The model input will be not the pressure PAO 
generated by the artifi cial pulmonary ventilation respirator but e.g. the compliance of the thoracic wall 
CW (a cyclic variation in the compliance can be used to model the function of the respiratory muscles). 

Acausal approach – implementation of the pulmonary ventilation mechanics model 
in Modelica

Comparing the model structure in Figs. 17 and 20, formulated by means of generalized state 
variables, to the implementation of the model in Simulink (Figs. 18, 19, 21), we can see that the 
interconnected blocks in Simulink express the structure of the calculation procedure rather than the 
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Figure 21: Simulink model implementation using the Laplace transform according to the equation 
(10).

MEFANET 2009

18



structure of the modelled reality.

In Modelica, this is different.

Acausal modelling tools, of which Modelica is a typical example, work with interconnected 
components that are instances of special classes in which equations are defi ned. When modelling in 
Modelica, the fi rst task is to formally express the modelled reality by means of equations.

In our simple pulmonary mechanics model, we describe the resistances of the respiratory tract, 
expansible elastic bags, and we might take into account air fl ow inertia (see Figs. 17 and 20). The 
description of the air fl ow in the lungs belongs in the pneumatic domain. However, if we disregard 
the compressibility of gases, we can describe the model using the hydraulic domain. The same formal 
expression can be provided by an electrical analogy.

ResistorResistorResistor

R*i = v

i = C*der(v) L*der(i) = v

v v

v

v = p.v n.v

Capacitor
Inductor

p.v
n.v

v = p.v n.vp.v
n.v

v = p.v n.vp.v
n.v

p.i

p.i
p.i n.in.i

n.i

i = p.i = n.i

i = p.i = n.i

i = p.i = n.i

p.v
p.i

p.v
p.i

p.v
p.i

n.v
n.i

n.v
n.i

n.v
n.i

Figure 22: The hydraulic and electric elements are from different domains but have the same formal 
description. The analogy of voltage (v) in the hydraulic domain is pressure, the analogy of current (i) 
in the hydraulic domain is a stream of fl uid (and a stream of gas in the pneumatic domain). Hydraulic 

resistance (R) follows Ohm’s law in the same way as electric resistance (the voltage difference is 
just replaced with the pressure gradient and the current is replaced with the fl ow rate). The hydraulic 
analogy of a capacitor is an elastic bag expanded by the difference in pressures inside and outside the 
bag. The analogy of the electric capacity of a capacitor (C) is the compliance of the elastic bag wall. 
When we include inertia in a hydraulic system, the force that accelerates fl uid fl ow is the pressure 

gradient. According to Newton’s law, the acceleration of fl ow, i.e. the fi rst derivative of fl ow der(i), 
is proportional to the pressure gradient (v) and inversely proportional to the weight of the selected 
fl uid column, called inertance (L). In the electrical domain, inertance corresponds to coil inductance. 

Each element from the hydraulic or electric domain has two interconnecting connectors through 
which electric current or medium fl ow (p.i, n.i) fl ows in and out; as a rule, the running fl ow (i) never 
disappears in the element (i.e. i=p.i=n.i). Simultaneously, voltage or pressure (p.v, n.v) is connected 
to the connectors by interconnecting into a network, and a voltage gradient or a pressure gradient (v) 

builds up in the element.
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It is interesting that the individual fundamental elements have the same formal expression (Fig. 
22) in different domains (electrical, hydraulic or pneumatic). This is due to the general system properties 
of the real world, where voltage or pressure correspond to generalized effort and electric current or 
medium fl ow correspond to generalized fl ow, as the case may be.

To build the pulmonary mechanics model in Modelica, we will need to defi ne the equations of 
three elementary classes, whose instances we will use in the model. To express the resistance of the 
respiratory tract, we will use an instance of the Resistor class. The elastic respiratory tract, alveoli and 
chest will be described as elastic bags using an instance of the Capacitor class and the air fl ow inertia 
will be expressed using an instance of the Inductor class.

The fragment with an equation notation in the “Resistor” class, describing the relation between 
variables expressing the resistance (R), pressure gradient (v) and fl ow (i) in Modelica, is simple, 
according to Ohm’s law:

   equation

       R*i = v;

 end Resistor;
The “Capacitor” class is used to describe an elastic bag expanded by air fl ow at the input. The 

compliance (C) characterizes the level of “expansibility” of the bag wall due to the pressure difference 
(v) between the air pressure forcing air into the bag and the pressure outside the elastic bag. The fl ow 
rate of air coming to the bag (i) is then described by the following equation in the Modelica language 
(where “der” means derivative):

equation 

     i = C*der(v);

end Capacitor;
The inertial element will be implemented in the model by means of the “Inductor” class.  The 

force that accelerates air fl ow is the pressure gradient. According to Newton’s law, the acceleration of 
fl ow, i.e. the fi rst derivative of fl ow der(i), is proportional to the pressure gradient (v) and inversely 
proportional to the weight of the selected gas column, called inertance (L).  We can thus describe the 
relation between a change in the fl ow rate (i) and the pressure gradient (v) depending on inertance (L) 
using a simple equation in the “Inductor” class:

equation 

   L*der(i) = v;

end Inductor;
Instances of the above-mentioned fundamental elements are interconnected in a network by 

means of connectors – two interconnecting connectors, labelled “p” and “n”, are defi ned for each of the 
elements. Voltage, or pressure for the hydraulic or pneumatic domain, is fed to each of them (p.v, n. v) 
when connected and an electric current or medium fl ow (p.i, n.i) can fl ow through the connectors. 

Connectors are instances of special connector classes, in which the variables used for interconnection 
are defi ned. Components can be interconnected by means of connectors that are instances of the same 
connector classes (the “interconnection sockets” must be of the same type).  In our case, connectors “p” 
and “n” are instances of the “Pin” connector class, which is able to interconnect voltages or pressures 
(p.v, n.v) and fl ows (p.i, n.i) with the environment. Values from the connectors are interconnected with 
the values of the variables (i) and (v) inside the individual fundamental elements. As a rule, fl ow does 
not disappear anywhere in any of the above-mentioned fundamental elements – what fl ows into an 
element also fl ows from it (i=p.i=n.i), and the appropriate gradient is calculated from the difference in 
voltages or pressures (v=p.v-n.v).

Implementing this requirement is simple – since Modelica is an object-oriented language, all 
three of the above-mentioned classes of fundamental elements will have a common ancestor (OnePort) 

MEFANET 2009

20



from which they will inherit connectors “p” and “n” as well as the following equations:

equation 

    v= p.v-n.v;

    0= p.i-n.i;

    i= p.i;

end OnePort;

The equations will thus connect the values of the pressures or voltages fed from the environment 
to connectors “p” and “n” (p.v, n.v) with the pressure or voltage gradient (v) and express the same value 
of (electric or hydraulic) fl ow at both connectors (p.i, n.i) and inside the component (i).

Connector classes defi ne the manner in which Modelica components communicate with one 
another. Figuratively speaking, by defi ning connector classes we defi ne the types of “sockets”. In 
connectors we defi ne individual variables that the connector will use to interconnect a component with 
its environment.

It is defi ned for each variable in a connector whether it represents a fl ow (then the variable is 
identifi ed with a “fl ow” attribute) or not (“non-fl ow” variables). This differentiation is important for the 
correct interpretation of the interconnection of individual components (instances of element classes) 
through the appropriate connectors (see Fig. 23). For fl ow variables, it is obvious that we must make 
sure the entity in question (whose fl ow the variable characterizes) neither disappears nor accumulates 
anywhere in the interconnection. Therefore, the sum of all interconnected variables with the “fl ow” 
attribute must be zero (as according to Kirchhoff’s law in the electrical domain). For non-fl ow variables, 
an interconnection defi nes that their values must be the same for all interconnected connectors (according 
to Kirchhoff’s fi rst law). By interconnecting the instances of individual fundamental elements through 
connectors, we express the requirement of the zero algebraic sum of the values of interconnected fl ow 
variables and the requirement of the equality of the values of interconnected non-fl ow variables. 

Each Modelica class can 
have a graphical representation 
– this is important especially for 
depicting the interconnection of 
instances where components are 
interconnected to create a clear 
graphical structure of a model. That 
is why we can also defi ne an icon 
for each class in Modelica. The 
icon can be animated. 

We can then create a model 
graphically in Modelica, by 
interconnecting the instances of 
individual elements that we select 
from a library with the mouse and 
setting the values of the appropriate 
parameters in a dialogue box.

For the implementation of 
our pulmonary ventilation model, 
we need to interconnect instances 
of the “Resistor”, “Capacitor” and 
“Inductor” elements.

i1

i3

i1+i2+i3=0

v1=v2=v3 v2

v3

i2

v1

i

i

Figure 23: Interconnection of Modelica components by means of 
acausal connectors. The values of fl ow-type connector variables 
(here the variable i) will be set so that the algebraic sum of the 
values of all interconnected fl ows is zero. The values of other 

(non-fl ow) variables (here the value of v) will be set to the same 
value at all interconnected connectors.
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However, we do not have to program the fundamental elements we need from the very beginning 
– Modelica includes extensive libraries from various physical domains (electric, hydraulic, mechanic, 
etc.) where such elements can be found. 

In our specifi c case, we can take advantage of e.g. the visual components of electrical circuits for a 
quick solution – we will create the individual instances (RC, RP, CL, CW and CS), enter the appropriate 
values of parameters (C and R) and interconnect the components with a connector.

The result is shown in Fig. 24. Comparing the model structure implemented in Modelica with the 
original schematic drawing showing the model structure (Fig. 17), we can see that the Modelica solution 
is straightforward and (unlike the Simulink implementation – see Figs. 18 and 19) the structure of the 
model corresponds to the structure of the modelled reality.

Increasing the complexity of the model by including an inertial element does not cause any 
signifi cant trouble – we just pick up the appropriate inertial component (LC) from the library with the 
mouse, set the value of its parameter (L) and interconnect it in the model. The structure of the model 
implemented in Modelica, shown in Fig. 25, corresponds to the structure of the modelled reality (see 
Fig. 20), while the structure of the Simulink implementation (Fig. 19) corresponds more to the method 
of solution for the model’s equations. 

The fundamental elements of the simulated reality can have very trivial notation of relations 
between the variables in question. A resistor, capacitor or coil from the electrical physical domain or 
their hydraulic analogies are illustrative examples of this. 

A complex system for calculation will ensue from interconnecting the fundamental elements in 
networks – a system of equations will result from their mutual interconnections. Their numerical solution 
in causal simulation tools may not be trivial at all – e.g. more complex R-C-L models of circulation or 
respiration implemented in Simulink are very complex (see e.g. circulation models in our Simulink 

Figure 24: The implementation of the pulmonary mechanics model (according to Fig. 17) in Modelica 
resembles the modelled reality much more than the implementation in Simulink.
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library, Physiolibrary – http://www.physiome.cz/simchips).

In Modelica, we do not have to bother with the method of solution for equations. Instead, more 
attention should be paid to the defi nition of equations in individual elements and interconnection of their 
instances (individual components).

In Modelica, the acausal tool itself will take care of the algorithm for solving the resulting system 
of equations and we can monitor the appropriate fl ows and pressures in various places in the simulated 
circuit when the simulation is launched. 

Causal and acausal connectors
The acausal connector interconnection of components is implemented by means of two types of 

variables: one representing a fl ow – for this, it holds true that the sum of fl ow values in all connected 
nodes is zero (because no medium accumulates in the area of branching into connected nodes); and one 
whose value remains the same in all connected nodes. It is advisable that each variable with the fl ow 
attribute is accompanied by a non-fl ow variable representing the generalized effort in relation to the fl ow 
variable in the connector interconnection. 

Unlike Simulink components (which have defi ned component inputs and component outputs), we 
do not defi ne what is an input and what is an output in an acausal interconnection. An acausal Modelica 
component does not calculate output values from input values. The interconnection of Modelica 
components by means of acausal connectors interconnects the equations in individual components into 
systems of equations.

In addition to acausal linking connectors, Modelica classes may include causal input connectors 
that are used to feed actual input variables from the environment, as well as causal output connectors 
that serve to send output variables to the environment.

Figure 25: In Modelica, implementing the pulmonary mechanics model taking into account the inertial 
element (according to Fig. 20) merely requires adding the LC inertial component.
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In addition to equations, Modelica classes may also include a precisely defi ned algorithm for 
the calculation of output values from input values (a typical example is the modelling of functional 
dependencies).

Modelica components are thus interconnected using both acausal links and causal, directional 
inputs and outputs.

Causal connectors usually distribute signals – e.g. in a blood circulation model, signal causal 
inputs may contain signals used to set resistance values in components representing the resistance of the 
circulatory system.

Consequently, a Modelica model is usually represented by a graphical set of components 
interconnected using both acausal and causal links. Components are instances of Modelica classes 
whose structure may also be represented as a network of interconnected instances. 

An example of the defi nition and use of an acausal element – elastic compartment
Let us see a simple example of the defi nition and use of a Modelica class. When modelling the 

dynamics of blood vessels, we often need an elastic (infl atable) compartment. 

Therefore we will defi ne a class named VascularElasticBloodCompartment whose instances will 
be elastic, acausally interconnectable compartments that can be connected to the “distribution” of a fl uid 
through an acausal connector – the fl uid may fl ow to/from the compartment at a certain rate and under 
a certain pressure. We can assign a graphic icon to each class representing a model or connector in the 

programming environment. We 
can create an icon for our elastic 
compartment, too (Fig. 26).

This is not just a 
school example – we take this 
compartment into account in our 
Modelica implementation of an 
extensive model of physiological 
functions, “Quantitative 
Human Physiology” (Abram 
2007, Coleman et al, 2008). 
Fig. 28 shows an example 
of the use of instances of the 
elastic compartment in our 
implementation of this extensive 
model.

We can imagine the elastic 
vascular compartment (Fig. 
27) as an infl atable bag with 
one acausal interconnecting 
connector (let us name it e.g. 
“ReferencePoint”) that we will 
use to connect to the environment 
– this connector will provide us 
with two variables:

• fl ow “ReferencePoint.q”, 

• pressure “ReferencePoint.
pressure”. 

Figure 26: Modelica allows creating an icon for each created 
class representing a model or a connector, which will be used 

to interconnect instances of the class with other instances using 
graphic tools.  The result is a model structure consisting in 

interconnected instances, very close to the modelled reality. Here 
we have created an icon for the elastic compartment, having one 
acausal connector (black diamond), three connectors for signal 
inputs and two connectors for signal outputs. Each instance of 

the elastic compartment will have this icon, displaying the actual 
value of the initial volume (specifi ed as a parameter) instead of 

“initialVol” and the name of the instance instead of “name”.
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(initial initialVol ml)
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ExternalPressure

C
om

pliance
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Causal input conectors: 
V0, External Pressure, Compliance
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If the connector is connected to the environment through a connector, the pressure value will truly 
be the same in all nodes connected to the compartment, and the fl ow will be distributed to all connected 
nodes so that its algebraic sum will be zero (nothing ever accumulates in the area of branching) – see the 
example of the component connection in Fig. 28.

Three signal (causal) inputs will enter the compartment from the outside:

• Basic charge “V0” – the value of the volume that must be reached before the pressure in 
the elastic compartment starts increasing. If the volume is less than zero, the pressure in the 
compartment will be zero. 

• Outer, external pressure “ExternalPressure” – the pressure of the ambient environment on the 
elastic compartment.

• “Compliance” of the elastic compartment – the pressure in the compartment will be inversely 
proportional to it if the compartment volume exceeds the basic charge. 

Two (causal) signal outputs will go from the compartment to its environment:

• Information about the compartment’s current volume, “Vol”

• Information about the pressure inside the compartment, “Pressure”

Va
sc
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ar
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es

su
re

Vol

V0

<V0
<V0

StressedVolume = max(Vol-V0,0);
Pressure = (StressedVolume/Compliance) + ExternalPressure;

ExternalPressure

der(Vol) = q;

Pressure = referencePoint.pressure

V0V0V0

StressedVolume

V0V0V0

V0V0V0

V0V0V0

flow: q=referencePoint.q
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ExternalPressure

Compliance

V0
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(initial initialVol ml)
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Acausal connector:
referencePoint

StressedVolume

Figure 27: The concept of an elastic vascular compartment is based on the idea that when a blood 
vessel fi lls with blood, the pressure in the vessel is determined only by the external pressure on the 

vessel until a certain residual volume (V0) is achieved; the elastic and muscle fi bres in the blood vessel 
will then start to tense and compress the volume of blood in the vessel with the VascularPressure 

pressure. If we label the volume of fl uid in the blood vessel Vol, then the volume of blood stressing 
the vessel (StressedVolume) will determine the Pressure inside the vessel depending on its Compliance 
and on the external pressure on the vessel (ExternalPressure). The vascular compartment is connected 

to the system by means of the ReferencePoint connector, through which blood may fl ow into the 
compartment (at the rate of referencePoint.q) under pressure (referencePoint.pressure).
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It is useful to design another parameter for the compartment (whose value will be read before the 
start of simulation), which would specify its initial charge:

Initial compartment volume, “initialVol”

We can also design an icon to display the elastic component in the programming environment.

The actual fragment of code describing the behaviour of the elastic compartment looks like this 
in Modelica:

model VascularElacticBloodCompartment extends QHP.Library.Interfaces.BaseModel;

 Real StressedVolume ( fi nal quantity=“Volume“, fi nal unit=“ml“);

 parameter Real initialVol(  fi nal quantity=“Volume“, fi nal unit=“ml“) 

    „initial compartment blood volume“;

 …

 initial equation 

    Vol = initialVol;

 equation 

    der(Vol) =  referencePoint.q;  

    StressedVolume = max(Vol-V0,0);
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Figure 28: The instance “splanchnicVeins” of the elastic compartment 
“VascularElasticBloodCompartment”. The acausal connection with the appropriate connectors at 

controllable resistors (labelled “connector1”, “connector2” and “connector3” here) will interconnect 
the equations in the elastic compartment instance “splanchnicVeins” into a system of equations of all 

the interconnected elements. The pressure value will be the same at all interconnected connectors: 
splanchnicVeins.ReferencePoint.pressure = connector1.pressure = connector2.pressure = connector3.

pressure. 
The algebraic sum of all fl ows at the interconnected connectors must be zero: 

splanchnicVeins.ReferencePoint.q + connector1.q + connector2.q + connector3.q = 0.
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    Pressure = (StressedVolume/Compliance) + ExternalPressure;

    referencePoint.pressure = Pressure;

end VascularElacticBloodCompartment;

The fi rst line declares the model class; in addition, there is the declaration of a real variable, 
“StressedVolume”, whose physical units will be checked. This is not just a question of code clarity and 
readability. The check of unit compatibility will enable us to avoid a very hard-to-fi nd error, when we 
exchange connectors in interconnections by mistake (if units are found to be incompatible, the check 
will not allow us to create the wrong interconnection at all).

Then there is the declaration of an “InitialVol” parameter, whose physical units will be checked as 
well. And then there is the equation section. The initialization of the compartment’s initial volume, i.e. 
the variable “Vol”, is declared fi rst. The other lines in the equation section declare four equations. The 
fi rst one is a differential equation – the derivative of the volume “der(Vol)” equals the infl ow “q” from 
the connector “referencePoint”.

The next equation declares that the value of the elastically stressed volume “StressedVolume” will 
be calculated as the difference between the compartment volume “Vol” and the value of its basic charge 
“V0” (which is an input); the equation also says that the value of the compartment volume may never 
drop down to negative values.

The third equation declares the relation between the “Pressure” in the compartment, the value of 
the “StressedVolume”, the “Compliance” and the “ExternalPressure”. We would like to repeat that these 
are not assignments but equations. The equation could also be written like this in Modelica:

Pressure - ExternalPressure= (StressedVolume/Compliance);

The last equation interconnects the value of “Pressure” in the compartment with the value of the 
pressure interconnected with its environment by the acausal connector through the “referencePoint.
pressure”.

The value of “Pressure” is also a signal output from the compartment – as a signal, it can be 
fed to other blocks – but it is a causal output (signal) variable and its value cannot be affected by what 
we connect it to. However, the situation is different 
with the interconnection from the acausal connector. 
When we interconnect an instance of the elastic 
compartment with other elements through the acausal 
connector, the four equations in the compartment will 
become part of the system of equations defi ned by 
the interconnection and the values of the variables in 
the elastic compartment instance will depend on the 
solution of the originated system of equations.

Hybrid models
Continuous dynamics expressed by a system 

of algebraic differential equations is often enough 
for the mathematical description of real-world 
models. However, we frequently need to represent 
discontinuous, discrete behaviour (which is often 
an approximation of quick continuous processes in 
physical systems) and continuous dynamic systems 
themselves are not enough for the description of 
real-world processes – examples include the opening 
and closing of valves in the hydraulic and pneumatic 

y

z

time

y, z

event 1 event 2 event 3 event 4

Figure 29: An example of the behaviour 
of real variables in hybrid systems. The 

continuous time variable “y” changes in time 
(its value does not have to be continuous – 
e.g. it may change discontinuously, perhaps 
in a jump, in response to an event). The real 
discrete-time variable “z” only changes its 

values at event instants. 
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domain, the behaviour of diodes in the electrical domain or the switching on/off of genes, the creation 
and transmission of nerve impulses or the opening and closing of ion channels in the biological domain. 
Discrete event dynamic systems are frequent in the description of technical applications. Discrete 
hierarchical state automata are a very powerful tool for the formalized description of processes and their 
interactions (Harel, 1987). 

When modelling large systems, it is often useful to combine discrete and continuous description 
to a lesser or greater extent. Such “hybrid” models can combine discrete and continuous time variables, 
and generate and react to various events (see Fig. 29). 

Hybrid models are supported in modern development simulation environments. For example, 
a continuous dynamic system model in Simulink can be combined with hierarchical state automata 
created in a special modelling tool, Statefl ow – the values of variables in Simulink can change the states 
of automata in Statefl ow, and Statefl ow can switch calculation blocks in Simulink by means of generated 
events, changing the calculation procedure.

However, acausal development tools can directly change the used equations (not just the method 
of solution). A small illustrative example can be the modelling of the average blood volume in a ventricle 

SteadyStateVolume Volume
SteadyStateVolume

Volume

BloodFlow+ (VentricleSteadyStateVolume - Volume)*K;

-
BloodFlow

BloodFlow

-BloodFlow- (Volume-VentricleSteadyStateVolume)*K

q_in.q

q_out.q

q_in.q

q_out.q

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

der(Volume)=q_in.q+q_out.q
if (SteadyStateVolume >=Volume) then

q_in.q=BloodFlow+ (VentricleSteadyStateVolume Volume)*K;
q_out.q= BloodFlow;

else
q_in.q=BloodFlow;
q_out.q= (BloodFlow+ (Volume VentricleSteadyStateVolume)*K);

end if;

SteadyStateVolume>=VolumeSteadyStateVolume>=VolumeSteadyStateVolume>=Volume

Causal inputs: VentricleSteadyStateVolume, BloodFlowCausal inputs: VentricleSteadyStateVolume, BloodFlowCausal inputs: VentricleSteadyStateVolume, BloodFlow

SteadyStateVolume<VolumeSteadyStateVolume<VolumeSteadyStateVolume<Volume

Figure 30: The Modelica acausal modelling tool allows changing the system of equations in use 
dynamically. The illustration shows the hydraulic analogy of a ventricle volume model represented 

as a continuous pump with variable internal volume. Two acausal connectors (q_in) and (q_out) 
interconnect the component with its environment; the component receives the value of blood fl ow 

(BloodFlow) and the required value of blood volume in the ventricle (VentricleSteadyStateVolume) as 
its causal inputs. Equations calculate the volume of blood in the ventricle (Volume) and blood infl ow 
and outfl ow values (q_in.q, q_out.q). The equations used will vary depending on whether or not the 
required volume of blood is greater than the current volume of blood in the ventricle (i.e. whether 

SteadyStateVolume >=Volume). 
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(see Fig. 30). 

A ventricle is modelled as a continuous pump with a variable internal volume.

The ventricle model is connected to the circulation by means of acausal connectors “q_in” and 
“q_out”. These connectors interconnect the fl ow of blood into (“q_in”) and out of (“q_out”) the ventricle. 
The change of blood volume in the ventricle will be determined by the algebraic sum of fl ows in both 
acausal connectors. In Modelica, this will be written as follows:

der(Volume)=q_in.q+q_out.q;

The model has two causal inputs – one is the current fl ow in the ventricle (“BloodFlow”) and the 
other is the required volume of blood in the ventricle in the steady state (“VentricleSteadyStateVolume”). 
If that volume is greater than the current ventricle volume (“Volume”), then infl ow to the ventricle will 
be set to a larger value than the outfl ow, proportionally to the difference between the required value and 
the actual value:

q_in.q = BloodFlow + (VentricleSteadyStateVolume - Volume)*K;

Outfl ow from the ventricle (“q_out.q”) will be set to the value of “BloodFlow” with a negative 
sign, because it fl ows out of the compartment:

q_out.q=-BloodFlow;  

Alternatively, when the required value of blood volume in the ventricle 
(“VentricleSteadyStateVolume”) is less than the actual value (“Volume”), the infl ow of blood will be 
set to “BloodFlow” and the outfl ow of blood will be set to a larger value than the infl ow, proportionally 
to the difference between the actual value and the required value. The equation notation fragment in 
Modelica then looks like this:

model VentricleVolumeAndPumping;

….

equation 

der(Volume)=q_in.q+q_out.q 

if (SteadyStateVolume >=Volume) then 

      q_in.q=BloodFlow+(VentricleSteadyStateVolume - Volume)*K; 

      q_out.q=-BloodFlow; 

else 

      q_in.q=BloodFlow;

     q_out.q=

  (BloodFlow+(VolumeVentricleSteadyStateVolume)*K);

end if; 

end VentricleVolumeAndPumping;

Two equations are then switched over in the model’s system of equations, depending on the values 
of the variables “Volume” and “VentricleSteadyStateVolume”. At fi rst sight, the notation looks like an 
assignment (as in standard programming languages) but they are equations. An equivalent notation may 
look like this:

model VentricleVolumeAndPumping;

MEFANET 2009

29



….

equation 

delta = (VentricleSteadyStateVolume - Volume)*K;

 der(Volume) = delta;

 q_in.q + q_out.q = delta; 

if (delta<0) then 

      q_in.q=BloodFlow;

else 

      q_in.q=BloodFlow+delta;

end if; 

end VentricleVolumeAndPumping;

Because they are equations, their order does not matter; nor does it matter whether the value of 
the variable “delta” in the third equation is on the right or on the left.

The actual notation of the equations used in Modelica is even more compact:

model VentricleVolumeAndPumping;

….

equation 

  delta = (VentricleSteadyStateVolume - Volume)*K;

  der(Volume) = delta; 

  q_in.q + q_out.q = delta;

  q_in.q = if (delta<0) then BloodFlow else BloodFlow+delta;

end VentricleVolumeAndPumping;

Modelica allows describing discrete and continuous systems acausally, providing many 
possibilities of combining models with discrete and continuous parts. Details can be found in Fritzon, 
2003.

Combining acausal and causal (signal) connections in hierarchically arranged 
models

Modelica makes modelling large systems easier and more controllable and supports their 
hierarchical decomposition.

Modelica’s object-oriented architecture supports the structuring of models into suitable parts 
having a coherent meaning so that they can be examined separately under certain conditions or re-used 
(whether in a different place in the same model or in another model), greatly enhancing the clarity of 
the created models. That is why we create large, reusable libraries of Modelica “simulation chips” in 
Modelica and each model is usually accompanied by an extensive, hierarchically arranged library of 
elements. Hierarchical components can be clicked to expand, which will reveal their internal structure.

An example of the hierarchical structure of a Modelica program is the “VascularCompartments” 
class (see Fig. 31), which implements a part of the blood circulation subsystem and makes use of an 
instance of the above-mentioned class “VascularElasticBloodCompartment”. Blood fl ows through 
acausal connectors between elastic compartment instances, resistances of individual parts of the vascular 
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system and two pumps modelling the activity of the right and left ventricles. The component also uses 
causal signal connections. An entire set of signal connections (coming from outside the component) is 
distributed e.g. by the “OrganBloodFlowSignals” bus. Input signal connections control the value of the 
peripheral resistors and the pumping functions of the right and left ventricles. The structure of the model 
represents the structure of the modelled reality much better and much more clearly than models created in 
causal modelling environments. Just compare the Modelica model in Fig. 31 to the model shown in Fig. 
6, implemented in Simulink. The two models represent roughly the same – the fl ow through an elastic 
vascular system and a heart pump (however, the Modelica model has more details). The Simulink model 
represents the calculation procedure rather than the structure of the modelled system. The advantage 
of acausal modelling tools is particularly evident in more complex models, where the possibility of 
hierarchical model decomposition is crucial for success, as it is important for the interconnection of 
components to always express in an aggregated manner the cardinal relations at a given hierarchical 
level while details can be obtained by digging deeper into the structure of individual components, which 
will reveal the aggregated structure of the modelled reality at a lower hierarchical level. 

Figure 31: An example of a part of the blood circulation subsystem – an instance of the 
“VascularCompartments” class in Modelica (a part of the Modelica implementation of the large 

Quantitative Human Physiology model). The model combines acausal and causal (control, signal) 
connections. In this case, the interconnection by means of acausal connections models the distribution 

of blood fl ows and pressures among the individual interconnected components. The model is 
organized hierarchically; individual blocks can be clicked to expand and represent instances of classes 
in which equations are specifi ed. The Modelica network thus represents the structure of the modelled 
system much better than networks in causal modelling tools, which rather represent the calculation 

procedure.
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For instance, the component representing the pump of the right ventricle is connected to the 
elastic compartment of the right atrium and the elastic compartment of the pulmonary arteries by means 

of two causal connectors (distributing the blood fl ow and blood pressure).  Causal signal control inputs 
are connected to it from the “organBloodFlowSignals” bus. The “inside” of the component is shown in 
Fig. 32. 

The heart is a pulsation pump that fi rst draws blood from the atria into the ventricles during 
“diastole” – at the end of diastole, the volume of blood in the ventricle equals the end-diastolic volume 
(EDV). After the end of diastole, the valves between the atrium and the ventricle close and the ventricle 
starts contracting during “systole”. The appropriate valves open and the right ventricle starts pumping 
blood out to the pulmonary artery (the left ventricle to the aorta). At the end of systole, the valves 
between the ventricle and the pulmonary artery in the right ventricle (and between the ventricle and the 
aorta in the left ventricle) close – the volume of blood in the ventricle at the end of systole is called end-
systolic volume (ESV). The ventricle muscles relax, the pressure gradient between the atrium and the 
ventricle opens the atrioventricular valves and diastole begins again.

In the ventricle model, the end-diastolic volume (EDV) is calculated in a “diastole” component 
and the end-systolic volume in a “systole” component. Modelica allows not only designing of the graphic 
form of icons representing the individual components but also animating the icons (to improve clarity). 
In the given example, both components have animated curves during simulation, which represent the 
relation between pressure in the ventricle and the values of ESV and EDV. A dot on the curves represents 
the current value of EDV/ESV. Blood pressure in the ventricle is derived from the value of the supply 
pressure in the atrium (this gets to the component from “q_in” by means of an acausal connector) 
and the value of the external pressure in the pericardium – this gets to the ventricle from the signal 

Figure 32: The “inside” of an instance of the right ventricle pump (component “rightVentricle”) from 
Fig. 30. The ventricle is modelled as a continuous pump with variable internal volume. 

MEFANET 2009

32



bus “BloodFlowSignals” by means of a causal connector, “Pericardium_Pressure”. In the “systole” 
component, blood pressure in the right atrium at the end of systole is derived from the value of the 
counter-pressure in the pulmonary artery (or pressure in the aorta in the left ventricle) – by means of 
an acausal connector, “q_out”, and the value of the external pressure in the pericardium (by means of 
the causal connector “Pericardium_Pressure”). During systole, the dependency of the ESV value on the 
end-systolic pressure is also affected by the stimulation (or blocking) of “beta receptors”, which results 
in changes in the contractile power of the heart muscle. A detailed description of equations that describe 
this dependency is contained in “BetaReceptorsActivityFactor”, a component whose output is the causal 
input for the “systole” component.

The ventricle model in Fig. 32 is not expressed as a pulsation pump but rather as a continuous 
pump with variable internal volume. We do not model pumping “beat by beat” but by the average 
cardiac output per minute.  

The systolic volume is calculated fi rst (in the component “StrokeVolume”), as the difference 
between the end-diastolic (EDV) and end-systolic (ESV) volumes. The value of the blood fl ow per minute 
is calculated (in the “BloodFlow” multiplier) from the systolic volume multiplied by the heart rate. The 
value of the heart rate (“HeartVentricleRate”) comes from the outside, from the “bloodFlowSignals” 
bus.

Figure 33: A ventricle model with valves, which generates a pulsating blood fl ow beat by beat. It has 
the same outer interface for interconnecting into the model of a higher hierarchical level as the pump 

model. 
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The average volume of blood in the ventricle is estimated as the arithmetic mean (“Vol_
SteadyState”) of the maximum heart charge in diastole (EDV) and heart volume at the end of systole 
(ESV).

The ventricle is represented (by the “ventricle” component) as a continuous pump that has variable 
internal volume (the component is an instance of the model from Fig. 30). The pump is connected to 
the blood circulation by means of acausal connectors (“q_in” and “q_out”). It receives the calculated 
value of the cardiac output (Blood_infl ow) and the required average value of the pump’s internal volume 
(“Volume_SteadyState”) by means of two causal connectors.

The model of the heart approximated as a continuous pump is suffi cient (and suffi ciently quick) 
for a number of applications in medical simulators. However, if we wish to model e.g. various valve 
defects, we have to use a more detailed model, describing the behaviour of the ventricle beat by beat. 

Replacing a simpler component with a more complex component does not have to mean reworking 
the entire model. Model notation in Modelica allows a very elegant exchange of components as different 
variants of classes with the same interface. 

For example, it is possible to exchange the instances of the left and right ventricle models 
(“rightVentricle” and “leftVentricle” components) inside the blood circulation subsystem model (see 
Fig. 31): Instead of the continuous pump model of the ventricles (Fig. 32), we can insert instances of 
a more complex model into the diagram, generating blood fl ow beat by beat. We just have to cast the 
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Figure 34: Hierarchical arrangement of models in Modelica. The “VascularCompartments” component 
(from Fig. 30) has one peripherally controlled resistor named “peripheral”. When clicked, it will 

expand and show a number of controlled resistors connected in parallel. Clicking one of them – named 
“kidney” – will display complexly controlled resistors in the kidneys. The combination of acausal 

and (causal) signal connections and the wide range of graphical options for displaying the modelled 
relations allow the creation of hierarchically structured and “self-documenting” models. 
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instances of the left and right ventricles. 

The basis of the ventricle model with valves that generates a pulsating blood fl ow beat by beat 
(Fig. 33) is an elastic compartment (“ventricle”), which has a generated oscillating value of compliance 
(unlike the elastic compartment used in the blood vessels). The frequency of the oscillations is determined 
by the number of heartbeats per minute. The shape of a single compliance change period (the “curve” 
component) expresses the properties of the heart muscle. The amplitude is affected by the stimulation 
and blocking of the beta receptors. At last, the direction and rate of blood fl ow in the ventricle is derived 
automatically from the properties of the valve components (“valve1” and “valve2” components) and 
from the pressure gradients. 

A simple valve model can be represented as an analogy of a series connection of an ideal diode 
with a resistor. An alternative (more complex) model of the valves will allow the modelling of various 
valve defects.

By exchanging components of different complexity with the same interface, we can create model 
instances of different complexity as needed for their application use. 

Modelica supports the possibility to exchange individual components by allowing defi ning 
interfaces with a variable number of control (input, causal) signals. Depending on the number of control 
signals, components may be more complex or, conversely, simplifi ed, and their function may be tested 
when connected to a model of a higher hierarchical level. This major advantage can be used effi ciently 
not only when debugging complex models but also when identifying a model from experimental data.

Making use of the hierarchy and component structure of models is very important in Modelica 
(see Fig. 34). For the model construction architecture, it is advisable to follow the rule stating that the 
structure of a component should always fi t in a single screen. A complex tangle of connections is not the 
sign of a good design and calls for trouble.

The purpose of this chapter was not to describe the physiology of blood circulation. We just 
wanted to use the rather detailed description of the structure of some components to illustrate how 
acausal modelling tools allow the creation of richly hierarchically structured, easily modifi able, “self-
documenting” models. 

When modelling extensive systems, such as the models of interconnected physiological regulations 
as a basis for medical simulators, the acausal modelling environment of the Modelica language is a great 
help. 

From simulation model to educational simulator
For many years we have been using the environment Mathworks Matlab/Simulink as development 

tool for building simulation kernel of educational simulators. Now, we use a very effi cient environment, 
which utilizes the Modelica simulation language.  By our experience, the simulation model development 
in Modelica is much more effi cient.

Creation of the educational simulator is demanding programming work, linked to the results of 
the simulation model development and to the created elements of interactive graphics. 

In accordance with the designed scenario, graphic elements of the user interface must be “knitted” 
together with the mathematical model programmed in the background. In order to make writing of the 
simulators easier (and not to have to program an already debugged simulation model “manually” in 
Visual Studio .NET), here, too, we have developed a special software tool to automatically generate the 
simulation model from Simulink in the form of a component for the .NET environment. 

To facilitate conversion of mathematical models from the Modelica language environment into 
.NET, we are extending OpenModelica compiler (as part of the international project Open Modelica) 
to C# simulation code generation (see Fig. 35). Besides interconnection with the model creation tools, 
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easy connection to graphic components of the user interface under development is important, as well. 
Flash components can be incorporated into the simulator in the process of creation through an Active 
X component. The new .NET environment version also introduces entirely new possibilities of creating 
graphic components. Thanks to the new WPF (Windows Presentation Foundation) technology, komplex 
graphic components can be created directly in the .NET platform, which include animations, vector 
graphics, 3D elements etc. (similarly as in Adobe Flash or even with potentially greater possibilities). 
It is important that the graphic user interface under development is directly integrated with the .NET 
platform, which removes the need of bridging the heterogeneous worlds of .NET and Adobe Flash in 
the simulators development. Microsoft Expression Blend provides considerable support of cooperation 
of artists and programmers thanks to the interface, which separates (and connects) the work of an artists 
and programmer. 

An artist can create komplex animations in this tool very comfortably (using a graphic user 
interface), and the animations can be controlled easily. The programmer specifi es such control by 
connecting to relevant program modules (the animations can be thus controlled by the simulation model 
on the background similarly as puppets on strings). 

Moreover, the new platform Microsoft Silverlight shall make it possible to develop simulators, 
which can run directly in the Internet browser (even on computers with different operating systems – it 
is only necessary to install the relevant plugin in the browser).

Figure 35: Making simulators in the .NET environment. The model is programmed as a component of 
the .NET environment (the so called .NET assembly) – preferably by means of automatic generation 

from models development tools (from the Matlab/Simulink or Modelica programming language 
environment). Graphic components are created in Adobe Flash or Microsoft Expression Blend. 

Creating animations in Expression Blend offers the advantage of creating both the animations as well 
as the simulator in the common .NET platform.
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Conclusion
Almost four decades have passed since the publication of the extensive model of Guyton, Coleman 

and Grander (1972), mentioned at the beginning of this chapter.

Current integrative models of interconnected physiological systems, created as a basis for 
medical simulators, are much larger. One example is the current model of Guyton’s colleagues and 
disciples – Quantitative Human Physiology, which can be downloaded from http://physiology.umc.
edu/ themodelingworkshop. The authors (Hester et al., 2008) have separated the implementation of 
the simulator and the description of model equations to make the model structure obvious to the wider 
scientifi c community. The model equations are described (in a very complex manner) using a special 
XML-based language.  However, the structure of the rather complicated model is rather hard to see from 
the notation at fi rst sight. The description of the model is distributed over dozens of subfolders, each 
of which contains fi les (often more than ten thousand).  Consequently, the overall model structure and 
individual relations are very unclear. That is why we have created a special software tool, QHPView, 
providing a well-arranged view of the mathematical relations from the QHP XML notation (see Fig. 36). 
However, the authors implemented the actual model by means of a custom, block-oriented solver. Since 
there are a large number of relations in models of such complexity (leading to the solution of implicit 
equations), block-oriented model implementation (where the outputs of one block are used as the inputs 
for other blocks) is very complicated and refl ects the calculation algorithm rather than the structure of 

VascularCompartments QHPView
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Figure 36: Our QHPView tool will allow clarifying the structure of the Quantitative Human 
Physiology (QHP) model, originally recorded in hundreds of XML fi les distributed over dozens 

of folders in which equations and individual relations were hard to identify at fi rst sight. The 
implementation (and subsequent modifi cation) of such a large model in a block-oriented environment 
is diffi cult.  Acausal modelling tools, which enable a declarative model notation using the notation of 

the model’s equations, are a great help, in particular for such extensive models.
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the modelled relation. As the complexity of a model grows, its clarity decreases.

The use of modern simulation environments where the individual parts of a model can be described 
directly as a system of equations rather than an algorithm for solving the equations is very useful, 
especially for extensive models. The notation of models is declarative – we describe the structure and 
mathematical relations, not the calculation algorithm (therefore we speak of acausal modelling).

An acausal description is much better in capturing the fundamentals of the modelled reality and 
simulation models are much more readable and thus less prone to errors. Object-oriented architecture 
allows building models with a hierarchical structure, using a large library of reusable elements.

Acausal modelling tools work with interconnected components that are instances of classes in 
which equations are directly defi ned, and acausal interconnection defi nes systems of equations. By 
contrast with causal modelling approaches, we do not have to bother about the method of solving such 
equations. We leave it to the machines to fi nd an algorithm for solving them. 

These advantages are demonstrated in practice by our implementation of the large QHP model, 
which we implemented (modifi ed and expanded) in the acausal environment of the Modelica language. 
Comparing the complex structure of the model from Fig. 35 with the examples of the implementation 
in Modelica in the previous illustrations, we can see that the acausal implementation leads to a much 
clearer model structure and makes model modifi cations and adjustments much easier. 

Today’s acausal modelling tools are able to generate and numerically solve large systems of 
equations, which allows the creation of diagrams of physical, chemical or biological processes directly 
during the implementation of a model. Such diagrams then allow obtaining the results of simulations 
directly with a mouse click.

New technologies bring about new possibilities and new challenges for the creation of simulation 
models. 

Acausal simulation environments and in particular Modelica, the new object-oriented simulation 
language that will make modelling large and complex systems signifi cantly easier, are among them.
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